

1

Proposing a Comprehensive Theoretical Training Framework
(Concepts, Elements and Design Process) for Computational Design

(Algorithmic, Parametric and Generative Design Systems)

 Mina Ramyar1 , Cyrus Bavar2  , Parisa Alimohammadi3

1. Department of Architecture, Sav.C., Islamic Azad University, Saveh, Iran. E-mail: mina.ramyar@iau.ac.ir
2. Corresponding Author, Department of Architecture, Sav.C., Islamic Azad University, Saveh, Iran. E-mail: cyrusbavar@iau-

saveh.ac.ir
3. Department of Architecture, CT.C., Islamic Azad University, Tehran, Iran. E-mail: par.alimohammadi@iau.ac.ir

Article Info ABSTRACT
Article type:
Research Article

Article history:
Received December

04, 2024
Received in revised

form June 13, 2025
Accepted July 14,

2025
Published online

August 15, 2025

Keywords:
Computational design,
Education,
Algorithmic design,
Parametric design,
Generative design.

In recent decades, computer technologies like computational design have made an
impact on architectural design. They were first used for automation and form finding,
later used for performance-based design and optimization. Computational design lead to
the development of algorithmic, parametric, and generative design systems, which are
now extensively used in architectural design education. According to previous studies,
computational design education mainly focuses on the application of coding and related
software, and theoretical knowledge of computational design not proposed and taught in
a separate course before its use in the design studio. However, due to the complexities
of computational design, an extensive training course is needed to fully understand its
capabilities. Therefore, this research proposes a comprehensive theoretical training
framework for computational design. To accomplish this objective in the first stage of
this research, the current status of its training was examined, and deficiencies in
computational design education have been identified through library resources. In the
second stage, important concepts for comprehending computational design knowledge
were examined, and in the third stage, with the goal of overcoming the deficiencies of
the current educational program, a comprehensive theoretical training framework which
includes two phases of 1. Learning computational design principles 2. Learning an
analysis of computational design principles is proposed. The proposed program includes
concepts such as definitions, types, distinctions, components and process of
computational design. The findings of this study could serve as a framework for
curriculum development in computational design.

Cite this article: Ramyar, M., Bavar, C., & Alimohammadi, P. (2025). Proposing a Comprehensive Theoretical Training
Framework (Concept, Elements and Design Process) for Computational Design (Algorithmic, Parametric
and Generative Design Systems). International Journal of Applied Arts Studies, 10(2), 49-96.

 © The Author(s).
 Publisher: Islamic Azad University, Yazd Branch.

mailto:cyrusbavar@iau-saveh.ac.ir
mailto:cyrusbavar@iau-saveh.ac.ir
mailto:cyrusbavar@iau-saveh.ac.ir
mailto:par.alimohammadi@iau.ac.ir
https://orcid.org/0009-0008-2826-2586
https://orcid.org/0000-0003-0293-1629
https://orcid.org/0000-0001-9665-1657

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

50

Introduction

Computational design (CD) has gained popularity in architectural design and education in
recent decades (Caetano, Santos, and Leitão, 2020; Ostrowska-Wawryniuk, Strzała, and Słyk,
2022). However, there are two problems with training CD: 1. Learning to program (Austin and
Qattan, 2016). 2. extensive CD knowledge (Caetano et al., 2020). To solve the first problem, it
was proposed to offer programming courses separately (Austin and Qattan, 2016). The second
issue is extensive CD knowledge (Caetano et al., 2020), which some students struggle to apply
during the design process (Agkathidis, 2015). However, while studying and assessing existing
CD research, it became apparent separate comprehensive course CD knowledge course had not
been proposed prior to its implementation in the design studio. For example, students in research
(Abdelmohsen, 2013) should acquire knowledge of CD. However, training is required. Some
research such as (Fischer, 2002) have exclusively focused on programming. Additionally in some
research, only some aspect of CD knowledge is considered. For example (Bianconi and
Filippucci, 2018; Lakhanpuria and Naik, 2023), focused on generative and parametric design,
although it is obvious that students need to be familiar with algorithmic design before applying
these methods. Algorithmic design is the fundamental system underlying other CD systems
(parametric and generative) (El-Khaldi, 2007). Lack of CD understanding resulted in limited use
of this technology because CD applications in architectural design are various, including
automation, form finding (Caetano et al., 2020), performance-based design, and optimization
(Alfaris, 2009). To solve this problem, comprehensive theoretical training framework is being
proposed in this research that include topics such as: 1. The concept of CD and digital design
(DD) and their distinction 2. CD systems (Algorithmic, Generative, Parametric) 3. Differentiation
of CD systems 4. Elements and concepts that shape CD systems 5. The concept of system 6.
similarity of system concept and CD 7. Prescriptive models and CD Process. The first step is to
understand CD concepts and differentiate between DD and CD (Caetano et al., 2020). The Next
step is to learn about CD systems and how they differ (El-Khaldi, 2007). Systems consist of units
and institutions that work together to achieve a common goal (Schmidt and Taylor, 1970).
Systems include concepts such as hierarchy, relationships and rules (Alfaris, 2009). CD systems
also takes these factors into account (El-Khaldi, 2007). Additionally according to MIT research,
the performance-based CD design process consists of decomposition, formulation, synthesis,
analysis, evaluation and optimization (Alfaris, 2009). By learning CD knowledge, its application
in architectural design becomes more targeted and conscious. In fact, there are prerequisites in
the field of CD that should be provided (Fasoulaki, 2008), to achieve better results in this field.
Therefore, in the next section, CD training status and important CD concepts in the theoretical
literature is examined.

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

51

Theoretical Literature

CD Training Status

Over the past two decades, CD has been used in architecture to solve a variety of design
problems (Caetano et al., 2020). Therefore, the curriculum should be adapted to the current
situation (Shtepani and Yunitsyna, 2023). Using CD requires extensive theoretical knowledge
(Caetano et al., 2020) and programming skills (Shtepani and Yunitsyna, 2023) that many students
lack. To solve first problem, (Austin and Qattan, 2016) proposes separate programming courses.
Analyzing previous research shows that there is no separate comprehensive theoretical training
framework before its use in design process (Vrouwe et al., 2020; Agirbas, 2022)). The training
program is based on the research plans of professors (Oxman, 2008). However Students should
have detailed theoretical knowledge, such as algorithmic thinking, before applying it.
(Abdelmohsen, 2013)) aimed to integrate generative design and digital construction into
architectural design education. The students have personally dealt with generative design. But
CD knowledge should be taught fully, and professors play an important role (Agkathidis, 2015).
Additionally Parametric design and CNC production have been applied in educational research
(Karzer and Matcha, 2009). (Gürbüz, Çağdaş, and Alaçam, 2010) used fractals to create design
solutions in the early stages of design education. Furthermore (Guidera, 2011) conducted
research on parametric generative design education. Other studies taught generative design
approaches such as shape grammar through collaborative design (Knight, 2012). Also
architectural spaces were reconfigured using generative design and digital construction by
students(Abdelmohsen, 2013). Another research in education created a generative model using an
ecological approach (Yavuz and Çelik, 2014). In addition, generative design and physical testing
have led to a new design process in the design studio (Huang and Xu, 2015). Agkathidis, (2015)
examined the impact of generative design on architectural design education and (Bianconi and
Filippucci, 2018) examined education in generative design and how design thinking can be
transformed through the use of these systems. During landscape design education, a database for
generative design and landscape design concepts were introduced (Vaz and Celani). Other studies
have included mathematical and algorithmic in early design education (Ostrowska-Wawryniuk,
Strzała, and Słyk, 2022). In another research (Abdelmohsen et al., 2017) discussed combination
of generative design and intuition can be beneficial in design education. Also recent research
used problem-solving based learning based on parametric design thinking in an architectural
studio in India (Lakhanpuria and Naik, 2023). Another article evaluated 3D printing and
parametric modeling tools by architecture students (Shtepani and Yunitsyna, 2023).
Additionally, (Nazidizaji and Safari, 2013) developed algorithmic approaches and reverse
engineering for architectural analysis. A significant trend involves integrating algorithmic and
parametric thinking (Peteinarelis and Yiannoudes, 2018; Vazquez, 2024). Also, pedagogical

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

52

innovations include proposing new teaching methods, such as using incomplete instructions
(Vazquez, 2024), fostering interactive learning environments and developing collaboration skills
(Vrouwe et al., 2020; Agirbas, 2022).

Furthermore, a review of internal references revealed that they also did not present a
comprehensive educational program covering CD concepts and processes. Instead, they primarily
focus on digital design education description, computer-aided design (CAD), and the general
application of computer technology in education. For example, Poursistany et al. (2016) analyzed
the impact of digital education on architectural creativity. Additionally (Asefi and Imani, 2017)
investigates the impact of digital software on enhancing creativity in design education.
Mahmoudi and Naghizadeh, (2010) addresses the transformation of architectural education due to
the introduction of Information Technology (IT) as a design tool for idea representation, speed,
flexibility, and 3D visualization, which manual tools lack. Additionally (Ahmadi Tabatabaie and
Moosav, 2024) focuses on identifying the appropriate time and method for teaching software to
enhance students' creativity. Their findings strongly recommend that software training should
commence after students acquire a strong foundation in design and hand drawing. Furthermore
(Eynifar and Hosseini, 2014) suggests that digital technologies in architectural design education
be viewed as "media" rather than merely tools, as they serve as mediators and shape ideas.
Therefore, it is apparent that several studies have incorporated CD systems in their curriculum
but separate comprehensive CD knowledge training program was not proposed. The integration
of technology into architectural design education precedes the development of its theoretical
framework (Schumacher and Krish, 2010). CD training lacks complete training program (Fischer
& Herr, 2001) and is not fully covered in the architectural design curriculum (Gürer, Alaçam, &
Çağdaş, 2012). Understanding algorithmic thinking is crucial in CD education (Ozkar, 2017).
Architectural education should provide future architects with algorithmic thinking skills and
thinking (Ostrowska-Wawryniuk, Strzała, and Słyk, 2022). Architectural education must respond
to these changes (Soliman, Taha, and El Sayad, 2019) and students should learn fundamental CD
concepts. The next section will cover the fundamental CD concepts that students need study in a
distinct course in order to meet these changing demands on architecture education.

Computational design and Digital design

Digital design (DD) and computational design (CD) have been driven by the advances in
computer technology over the last decades. While DD requires computer tools, CD can be
performed with or without a computer (Caetano et al., 2020). Architects used computing and
algorithms to break down complicated design problems and solve them more effectively (M
Rocker, 2006). Recent advances have resulted in CD replacing CAD (computer-aided design) in
architecture (Kalay, 2004). This methodology drastically changes the standard design method by
introducing innovative methodologies(Gurcan Bahadir and Tong, 2025). CD requires extensive

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

53

design knowledge and enables automation, form finding, optimization and performance based
design (Caetano et al., 2020). CD concepts has developed algorithmic, parametric and generative
design methods in architecture (Michelle and Gemilang, 2022). These methods have gained
popularity in optimization, simulation (Oxman, 2017). Their applicability went beyond design
automation and form finding (Mitchell & Terzidis, 2004). CD methods follow a system structure
(El-Khaldi, 2007). A system is a collection of units working toward a coherent goal (Schmidt and
Taylor, 1970; Alfaris, 2009). System includes CD-related ideas such as hierarchy (El-Khaldi,
2007), relationship (Gu, Yu, and Behbahani, 2021) and rule (Doe, 2018). As technology
advances, CD is becoming an increasingly important component in architectural design (Fatai,
2024) and education (Indraprastha, 2018). CD systems are more important than digital
technologies for promoting CD thinking in architectural education (Adem and Çağdaş, 2020).

a. Algorithmic design system

Algorithmic design (AD) systems serve as a basis for the development of other CD systems
(El-Khaldi, 2007). Online Cambridge dictionary defined the word algorithmic as “connected with
or using algorithms.” AD become more and more popular because of its versatility and ability to
establish work environments free from constraints (Castelo-Branco, 2020). Terzidis proposed AD
(Terzidis, 2004), a process that uses algorithms(Sammer, Leitão, and Caetano, 2019). AD
Thinking provides a step-by-step guide to achieve design goals and it supports designers in
analyzing the context and understanding connections (El-Khaldi, 2007). AD is used in 3D
building printing (Guerguis et al., 2017), residential project design (Chen, 2020) and building
facades (Caetano, Garcia, Pereira, and Leitão, 2020) and envelope design Figure 1, (El-Khaldi,
2007). Algorithms can find the nth member of an infinite set (Leeds, 1977). It has the potential to
produce a novel method of idea generation that is beyond human perception (Terzidis, 2006).
Algorithms can be executed in parallel, sequentially (Figure 2,3) or randomly (El-Khaldi, 2007).
AD uses algorithms to create design models (Michelle and Gemilang, 2022), the relationship
between the algorithm and the design is evident in algorithmic designs such as Morpheus Hotel
Figure 4, (Caetano et al., 2020). Algorithms manipulate numbers, alphabets, geometric elements
and fixed/variable units (Caetano and Leitão, 2021). Functions connect algorithms to units using
equations including operators and architectural operators include activities like movement and
rotation (El-Khaldi, 2007). Furthermore (Moussavi, 2009) explores the influence of function on
form. In algorithmic design, inheritance refers to a directional relationship in which the child
inherits the characteristics of its parent (El-Khaldi, 2007). A rule-based algorithm can be
described as follows: If the condition... is true, start the function (De Souza and Ferreira, 2002).
Decomposition (dividing a task into subtasks) is a key concept in algorithms. (Fried et al., 2018).

b. Parametric design system

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

54

Parametric design (PD) is one of the most commonly used CD methods that allows the
creation of a parametric model by specifying dimensions and geometry (Wahbeh, 2017). Online
Cambridge dictionary, defined the word parametric as “relating to the parameters of something.”
Morty introduced parametric design in 1971 as the study of dimensional relationships through the
use of parameters (Moretti, 1971). Its powers were further enhanced by the advent of parametric
animation in the late 1990s to manipulate forms dynamically by adjusting dimensions,
constraints, and connections (Mark, 2008). Greg Lane's work based on transformations is well-
known examples. Catia creates models in Figure 5, is regulated by two main parameters:
thickness and height (El-Khaldi, 2007). PD is defined by its ability to create multiple solutions
through rule-based algorithms, allowing for dynamic adjustments (Gu, Yu, and Behbahani, 2021;
Jabi et al., 2017; Eastman, 2011). It enhances creativity by enabling designers to visualize and
manipulate complex relationships within their designs (Campbell and Shea, 2014). PD has been
used in green building design (Zhang, 2020) and energy efficient design (Touloupaki and
Theodosiou, 2017). PD has been described in different ways (Caetano et al., 2020) as an
optimization technique that identifies solutions within constraints (Eggert, 2005) and as a design
style (Schumacher, 2008). Any system capable of connecting pieces is parametric whereas object
properties are established through connections and inheritance (El-Khaldi, 2007). It is a subset of
both algorithmic and code-based design (Elghandour et al., 2016). PD can accommodate any unit
and relies on relationships. Designers can use inheritance to create families of objects, with
changes in the first generation affecting the second generation (El-Khaldi, 2007). When
parameters are used in algorithmic and generative design, they can be parametric (Caetano et al.,
2020). Parametric design can shift the focus from form to function. For example in Figure 6, PD
have been used to discover shape and achieve goals such as user visual comfort, energy
optimization and solar protection (Tabadkani et al., 2019). This method can help choose the best
solutions from a variety of design options (Khamis et al., 2022).

Figure 1. An example of an algorithmic envelope design (El-Khaldi, 2007).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

55

Figure 2. Parallel execution of
algorithm (El-Khaldi, 2007).

Figure 3. Sequential execution of
algorithm (El-Khaldi, 2007).

Figure 4. Algorithmic design of
Morpheus hotel (Source:

Archdaily).

Figure 5. An example of a parametric design (El-
Khaldi, 2007).

Figure 6. An example of a parametric facade design
(Tabadkani et al., 2019).

c. Generative design system

Generative design (GD) systems have long been used and Durand applied it to architecture in
1803, developing new ways to create plans by assembling structural elements (Fasoulaki, 2008).
Online Cambridge Dictionary defined generative as “able to produce or create something.” These
systems use parallel, sequential and random algorithms (El-Khaldi, 2007). GD is an algorithmic
or rule-based technique that creates a variety of possible design solutions(Ashour and Gogo,
2024). This approach executes programmed instructions until the necessary conditions are met,
and simple algorithms produce sophisticated results (Humppi, 2015). Cellular automata, L-
system and shape grammar are three examples of generative design systems (El-Khaldi, 2007) ;
(Fasoulaki, 2008; Abdelmohsen, 2013; Toussi, 2020). Fractals have also been considered as a
GD system (El-Khaldi, 2007; Fasoulaki, 2008). There is a relationship between algorithm and
design output in AD, but not in GD, sophisticated creations based on simple algorithms (Caetano
et al., 2020). L-systems model plant growth (Prusinkiewicz et al., 2018), cellular automata model
reproduction (El-Khaldi, 2007), fractals model self-similarity (Lorenz, 2011), and shape
grammars mimic the human ability to visually observe and calculate (Stiny, 2022).

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

56

d. Generative design system (cellular automata)

Cellular automata (CA) is a GD technique that simulates reproduction(Caetano et al., 2020).
John von Neumann's abstract model served as the original inspiration for cellular automata (El-
Khaldi, 2007). CA facilitate the generation of spatial layouts by considering user-defined
parameters such as geometry and adjacency requirements (Ng, Chen, and Sathikh, 2024). It can
model ecological dynamics, allowing for the integration of environmental factors into
architectural design (Liu and Herr, 2023). The network of interconnected cells adjusts their state
according to its neighbors and local regulations (Patt, 2015). Its applications in architecture can
range from facades and interior elements (Herr and Ford, 2015) to the design of urban districts
(de Oliveira and Celani, 2019). CA consist of replacement rules, cells(can contain geometric
descriptions, colors, numbers, and other data) and initial states and inheritance is not possible
with cellular automata because information is not passed on across generations (El-Khaldi, 2007).
Chris Langton's diagram illustrates the behavioral transition of CA from fixed rules (generate
cells in a fixed section) to random behavior(generates them in random mode) Figure 7, (Flake,
2000). Cellular automata can generate intricate patterns in architectural design (Herr & Ford,
2015). Wolfram, (2002) has studied one-dimensional cellular automata. He found the eight
fundamental combinations of primitive cellular automata. Two states (black or white) yield eight
(23) combinations Figure 8, and according to the initial combinations, there are 256 potential
states (28). The Figure 9, shows CA with rules, an initial state and replaced states. John Fraser
used them to form shapes (Januszkiewicz and Paszkowska-Kaczmarek, 2023). The Figure 10,
shows application of cellular automata in envelope design (El-Khaldi, 2007). They are crucial to
the development of CD thinking in design studios (Adem and Çağdaş, 2020). The integration of
CA in academic settings promotes innovative design thinking, preparing future architects to
leverage these tools in real-world applications (de Oliveira and Celani, 2019).

Figure 7. Behavior of CA from fixed to random
proposed by Chris Langton (Flake, 2000)

Figure 8. Eight primary combinations of CA (Wolfram,
2002)

Figure 9. Combinations of CA (Wolfram, 2002)

Figure 10. CA in envelope design (El-Khaldi, 2007)

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

57

e. Generative Design System (L-System)

Aristide Lindenmayer developed the L-System generate shapes using strings, alphabets, rules,
and repetitions (Lindenmayer, 1968). They provide a formalism for simulating plant growth
(Prusinkiewicz et al., 2018). They can represent complex branching structures and organ
differentiation, enhancing the realism of plant simulations (Loi, and Cournede, 2008). Timed,
parametric L-systems enhance their ability to model dynamic phenomena like morphogenesis and
mechanical models (McCormack, 2004). Each generation replaces previous data, enabling the
generation of new structures without retaining prior configurations (Št'ava et al., 2010) and
algorithms are executed in parallel. The alphabet growth representation creates a tree-like grid
Figure 11, (Prusinkiewicz and Lindenmayer, 2012). Letters are the smallest units of the system.
Figure 12, shows the application of L-system in envelope design (El-Khaldi, 2007). They consist
of a grammar that includes an axiom, which is expanded into complex strings through defined
rules Table 1, (Ashlock, Gent, and Bryden, 2005). They can visualize complex design patterns,
such as those found in urban planning (Yu and Min, 2022).

Figure 11. Tree network, L system (Prusinkiewicz
and Lindenmayer, 2012).

Figure 12. Application of L system in envelope design
(Alfaris, 2009).

Table 1. The rules, the initial string and subsequent generations (El-Khaldi, 2007).

Rule
Initial string R R L R

Generation 1 L L RR L

Generation 2 RR RR LL RR

Generation 3 LL LL RR RR LL

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

58

f. Generative design system (Fractal)

The creation of natural shapes by architects relies heavily on geometric notions (Pérez García
and Gómez Martínez, 2010). Euclidean geometry is limited to smooth curves and surfaces, which
do not reflect the irregularities present in natural objects (Banerjee, Easwaramoorthy, and
Gowrisankar, 2021). Fractal geometry is suitable for developing nature-inspired architectural
designs (Mandelbrot, 1982). Fractals are complex geometric forms, pushing the boundaries of
traditional architectural design (Ediz and Çağdaş, 2007) with self-similarity, meaning that its
constituent parts are similar to one another. Self-similarity allows for the replication of patterns at
different scales, which can be observed in historical architectures like Gothic cathedrals and
Indian temples (Lorenz, 2011). To create a fractal, you must specify an initializer and rules for
replacing copies of the initializer with smaller versions (El-Khaldi, 2007). Fractal geometry has
been used in a variety of fields, including the natural sciences (Peitgen et al., 2004; Contini,
2007), engineering (Leung, Wu, and Zhong, 2004) and in medicine (Bankman, 2008). Fractal
geometry is used in architecture to visually view buildings (Bovill and Bovill, 1996; Ostwald,
2001; Rian et al., 2007) and cities (Batty and Longley, 1994). Fractals can create new aesthetics
(Patuano and Tara, 2020). Greg Lynn used fractals to create the Cardiff Bay Opera House
(Addison, 1997). They lack a smallest unit because they are based on recursive models because
they iteratively decompose components and replace them with new algorithms (El-Khaldi, 2007).
Fractal geometry has been used to develop and study properties of innovative planar truss
configurations (Rian and Sassone, 2014) and created new free and complex shell structures
(Stotz, Gouaty, and Weinand, 2009; Vyzantiadou, Avdelas, and Zafiropoulos, 2007). The
Sierpinski triangle (Ettestad and Carbonara, 2018) and the Koch curve (Purnomo et al., 2019) are
two well-known instances of fractal geometry (Figure 13,14,15). Albrecht Dürer 's pentagonal
tile pattern was an early example of fractal design Figure 16. In fractal systems such as the L
system, inheritance is not possible because data is constantly replaced (El-Khaldi, 2007). A
fractal system creates objects with similar components that appear at different sizes Figure 17.
They have been used to create a porous roof Figure 18, filtered sunlight and allowed air
circulation Sakai et al., (2012) and to design a non-smooth covering surface Figure 19, that can
transmit sound (Cox and d’Antonio, 2016). They have been used in computer models of tree
column topologies (Rian, Callegary, and Spinelli, 2015). However fractals and other
mathematical concepts do not teach us how to create; Nevertheless, they can help improve the
design process (Rian and Asayama, 2016). Digital tools facilitate the application of fractal
geometry in design (Ediz and Çağdaş, 2007) and is increasingly used in architecture to create
unique and structurally optimal designs, inspired by natural forms and mathematical principles
(Mayatskaya et al., 2022).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

59

Figure 13. Serpinski's triangle
Source: (El-Khaldi, 2007).

Figure 14. Koch curve Source: (El-
Khaldi, 2007).

Figure 15. Contour set Source:
(El-Khaldi, 2007).

Figure 16. Fractal pattern,
Albrecht Dürer Source: (El-

Khaldi, 2007).

Figure 17. Fractal envelope
Source: (El-Khaldi, 2007).

Figure 18. Fractal pattern roof
(Rian and Asayama, 2016).

Figure 19. Non-smooth covering fractal surface (Sakai et al., 2012).

g. Generative design (Shape Grammer)

Shape Grammar (SG) is a generative design system (Caetano et al., 2020). Stiney and Gips
were pioneers in this discipline (Stiny and Gips, 1971). It integrate visual observation with
computational processes, enabling designers to engage in a form of "visual calculating" that
enhances creativity (Stiny, 2022) and they are series of recursive transformations performed on
an original shape to produce new shapes (Toussi, Etesam, and Mahdavinejad, 2021). SG
develops an endless number of designs with just a few rules and it can decompose complex
structures into basic components and create complex shapes from simple shapes (Stiny and Gips,
1971). Figure 20, demonstrates a SG rule (El-Khaldi, 2007). By combining SG with parametric

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

60

design, designers can simulate energy performance, (Granadeiro, Duarte, and Palensky, 2011).
SG enable inheritance because replacement rules can be applied to certain parts of components
while leaving others without transformation (El-Khaldi, 2007). Stiny categorizes units as point,
line, plane and solid Table 2, (Stiny, 2006). Stiny and Mitchell used a parametric SG to create
Palladio's villa designs (Tepavčević and Stojaković, 2012). Furthermore SG was used to analyze
Frank Lloyd Wright's houses and the vernacular Japanese teahouses, traditional Taiwanese
houses, Mongolian garden (Chiou and Krishnamurti, 1995; Stiny and Mitchell, 1980; Knight,
1981). SG could describe the historical development of styles in the creation of new design
(Knight, 1981). SG is used to optimize daylight in the building envelope (Ashrafi and Duarte,
2017). Truss structures were created using performance-based optimization and SG (Haakonsen,
Rønnquist, and Labonnote, 2023). It was also used to generate compositions Figure 21, (Eilouti,
2019). The Gothic minaret was designed using SG Figure 22, (Knight, 2000) and Frank Gehry
used SG algorithms to justify envelope manufacturability Figure 23, (Shelden, 2002). City
Engine, a software program that uses SG to autonomously create models based on a set of rules is
creating virtual cities using 2D road networks (Müller et al., 2006). The Figure 24, shows how
the program was used to create photos of Pompeii (Tepavčević and Stojaković, 2012). In
architecture schools they are often used in design lessons (Haakonsen, Rønnquist, and
Labonnote, 2023). CD systems gives users a tool to achieve goals (Haakonsen, Rønnquist, and
Labonnote, 2023). The concept of a system is important in CD (Alfaris, 2009). This concept is
examined in the next part.

Figure 20. An example of a shape
grammar (Stiny, 2006)

Figure 21. A shape grammar
composition (Knight, 2000)

Figure 22. Minaret design (Knight,
2000)

Figure 23. Shape Grammar envelope (Shelden, 2002)

Figure 24. Modeling the Pompeii city
using shape Grammar software
(Tepavčević & Stojaković, 2012)

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

61

Table 2. Shapes grammar units (Stiny, 2006).

Basic element Dimension Boundary Content

Point 0 None None

Line 1 Two points Length

Plane 2 Three or more Area

Solid 3 Four or more Volume

System concept and computational design

The system concept influenced the architectural design and CD system. System is a collection
of units and institutions that work together to achieve a common goal (Schmidt and Taylor,
1970). They have systematic structure (El-Khaldi, 2007). In these systems, components are
hierarchically structured and interact to achieve goals such as envelope design and energy
optimization (Granadeiro et al., 2013). As an example, the bottom-up approach of CA allows for
self-organization, where local interactions lead to global patterns (Liu, Corcoran, and Feng, 2020)
or in algorithmic design systems, multiple components described by rules, work together to
achieve design goals (El-Khaldi, 2007). CD systems were used to create an integrated
architectural design and Subsystems have an interaction with each other (Alfaris, 2009;
Fasoulaki, 2008). In this status there is a balance between shape exploration and performance, for
example it can be used to design high-rise building based on structural, lighting, zoning and
aesthetic criteria (Fasoulaki, 2008).

A. The concept of the system and its components

The concept of system has penetrated to architectural design and CD systems (Alfaris, 2009).
The Cambridge dictionary defines a system as “a set of connected things or devices that operate
together.” Systems thinking encourages a holistic view, allowing architects to consider
interactions within complex environments, leading to more effective design outcomes (Furtado,
2012). Systems are characterized by their goals such as service-oriented (airport, stadium),
product-oriented (car factory) and process-oriented (oil refinery) (DAG and Ethic, 2000).
Systems consist of numerous components that can adopt various configurations (Wong et al.,
2023). Architectural research is concerned with systems in design to design the building envelope
and predict energy consumption (Granadeiro et al., 2013). Systems analysis can help us better
understand goals, constraints, risks, costs, opportunities and resources (Alfaris, 2009). System
characteristics include integration, correlation, input/output, hierarchy, interaction, change and
adaptability (Littlejohn and Foss, 2010). System tasks are completed in response to inputs
(Papalambros and Wilde, 2000). The system's ability to form patterns is not solely dependent on
local interactions but also on the broader context of the system's environment (Middya and Luss,
1994). Diagram 1, shows the boundary of the office building system as influenced by its

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

62

Office
building
system

boundary

Site
Conditions

Urban
conditions

Climate
Conditions

(Temperatur
e, Sunlight,

Wind)

Soil
Resistance

main
system

sub
system1

sub system A sub system
B

sub
system2

sub
system3

sub system c

sub
system4

sub system
D

surroundings and environmental components (site conditions, soil quality, weather and urban
environment) and it affects energy consumption, structural stability and working conditions
(Alfaris, 2009).

The behavior of a system varies over time and System status is a set of variables that represent
a specific characteristic of the system (DAG and Ethic, 2000). For example, variables such as
aircraft waiting times and available parking spaces can be used to monitor the airport system
(Alfaris, 2009). Effective variable selection should ensure that the chosen variables are relevant
and significant (Mulaik, 2009). For example, if an airport wants to improve the passenger
experience, parking lot modeling may be necessary. However, parking spaces may not improve
safety (DAG and Ethic, 2000). Every system has an architecture that determines its behavior
(Whitney et al., 2004). Hierarchy is a key concept in systems and Diagram 2, shows a
hierarchical organization of system (Alfaris, 2009). Complex systems are typically organized into
layers, where each level represents different scales and interactions among components (Wu,
2013). Hierarchy enables inheritance, which means that traits are passed from parents to children
(El-Khaldi, 2007). Each system can be a subsystem of a larger system (Alfaris, 2009). The
system concept distinguishes between two types of architectural artifacts: modular (Kazemi,
2019) and integrated (Miraglia, 2014). In the modular architecture Diagram 3, function and
physical elements are inextricably linked (Eppinger and Ulrich, 1995) and each component can
be developed separately. In integrated architecture Diagram 4, the connection between function
and physical elements is complicated (Ulrich, 1995). It is difficult to determine the mutual impact
of components on performance (Ulrich and Eppinger, 2016). Integrated systems prioritize a
cohesive design that enhances operational efficiency (Miraglia, 2014). While some theories
advocate modular architecture, real-world examples show that designs with integrated functions
can achieve greater success and goals (Ulrich and Seering, 1990; Whitney, 1996). As Figure 25,
shows, the modular design of a nail clipper does not always outperform an integrated nail clipper
Figure 26, (Ulrich, 1995). In addition, Figure (27,28), illustrates two types of building envelopes
(modular and integrated envelope).

Diagram 1. The boundary of the office building system
(Source: authors).

Diagram 2. Hierarchy in system (Alfaris, 2009).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

63

Computational design process

In the late 1950s and 1960s, design models were created to reflect creative problem solving in
design through phases such as synthesis, analysis, and evaluation (Alfaris, 2009). The design
process involves a sequence of analytical, synthetic, and evaluative steps, allowing for iterative
problem-solving and solution refinement (Vande Zande, 2006). Prescriptive models provide
guidelines for implementation to achieve specific goals in design processes (Fernstrom, 1988)
have algorithmic or systematic structure (Alfaris, 2009) and descriptive models capturing the
actual process and patterns, identifying innovation opportunities (Zhang et al., 2012). Teaching
prescriptive modeling alongside descriptive techniques enhances students' ability to implement
design intent effectively (Gogolla and Selic, 2020). CD systems have algorithmic or systematic
structure (Alfaris, 2009). Prescriptive models include the Archer (Archer, 1984), Eggert (Eggert,
2005), Asimov (Asimow, 1962), Marcus (Markus, 1969), and Mawer (Maver, 1970) models.
Various prescriptive design models provide organized methods for the design process. These
models outline the stages of a project from inception to completion, ensuring systematic progress

Diagram 3. Hierarchy and connection of physical
elements in modular architecture (Alfaris, 2009).

Diagram 4. Hierarchy and connection of physical
elements in integrated architecture (Alfaris, 2009).

Figure 25. A Modular nail clipper (Ulrich, 1995).

Figure 26. An integrated nail clipper (Ulrich, 1995).

Figure 27. Modular façade design (Alfaris, 2009).

Figure 28. Integrated façade design (Alfaris, 2009).

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

64

and quality control (Maher, 1990). Archer 1984, identified six design tasks Diagram 5, including
programming, data collection, analysis, synthesis, development, and communication. The Eggert
2005 model Diagram 6, is divided into four phases: formulating problem, generating alternatives,
analyzing alternatives, and evaluating alternatives (Eggert, 2005). As another prescriptive model,
Asimo's model Diagram 7, is vertically structured and extends from needs description to
production, including feedback loops to monitor and resolve difficulties. Asimo's horizontal
model consists of repeated decision cycles: analysis, synthesis, evaluation and communication
(Asimow, 1962). Marcus and Mawer's design model Diagram 8, provides a decision-making
sequence that includes analysis, synthesis, evaluation, and decisions at various design levels
(outline proposal to detail design) (Markus, 1969; Maver, 1970). MIT researchers proposed a
Prescriptive performance-based CD process consisting of six phases including decomposition,
formulation, synthesis, analysis, evaluation and optimization Diagram 9. Decomposition as a first
step, breaking the problem into components. Formulation (the second phase) identifies
component relationships (Alfaris, 2009). Alexander initiated the study of these ideas (Chermayeff
and Alexander, 1963). Synthesis assembles recognized components according to desired
principles and uses CD systems and offers a variety of design solutions (Alfaris,
2009).Computational design synthesis is a research area focused on approaches to automating
synthesis activities in design (Campbell and Shea, 2014).

Diagram 8. Tom Marcus and
Tom Mawer's design model

(source: Markus, 1969;
Maver, 1970).

Diagram 7. Asimov
design model (source:

Asimow, 1962).

Diagram 6. Eggert
design model (source:

Eggert, 2005).

Diagram 5.
Archer's design
model (source:
Archer, 1984).

Diagram 9. Performance based computational design process (Alfaris, 2009).

Decomposition Formulation Synthesis Analysis Evaluation Optimizatiom

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

65

Main problem

sub-
problem2

sub- problem3

sub-problem1

Decomposition

In computational contexts, tasks can be broken down into sequential sub-tasks, which can
simplify the design process (Fried et al., 2018). Decomposition is essential since learning
individual components leads to a greater comprehension of the whole system (Alfaris, 2009).
Alexander, (1964) broke down design problems based on customer needs as a network Diagram
10. Vertices represent functional requirements, while edges illustrate their connections and the
degree of interaction. Shorter edges mean more interactions (Alfaris, 2009). This grouping allows
interactions to be mapped (Alexander, 1964b). Models such as decomposition help in structuring
design knowledge, facilitating better problem-solving and innovation in design (Maher, 1990).
Two hierarchical methods can be used in decomposition (1. tree hierarchy Diagram 11, and 2.
network hierarchy Diagram 12. Decomposing 3D models into architectural elements enhances
comprehension of their structure, allowing for better analysis and representation (Kobyshev et al.,
2016) Figure 29, shows decomposition of school floor plan into sub-problems (environmental,
structural and circulation sub problems) and Figure 30, shows how the outer envelope is
decomposed into its components (Alfaris, 2009).

Diagram 10.
Decomposition of a

problem (Alexander,
1964a).

Diagram 11. Decomposition (tree hierarchy)
(Alfaris, 2009).

Diagram 12. Decomposition (network
hierarchy) (Alfaris, 2009).

Figure 29. Decomposition of the school plan (Alfaris,
2009).

Figure 30. Decomposition of the (source: Alfaris,
2009).

sub-problem1

sub-problem2

sub-problem3

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

66

Formulation

The next step (formulation) in the CD model is to understand the relationships between the
various components Diagram 13 (Alfaris, 2009). CD utilizes mathematical languages to define
relationships between components, enabling sophisticated design processes that are otherwise
unattainable (Koyama, 2021). Components in CAD systems are often sized and positioned based
on their relationships with other components, ensuring that designs are coherent and functional,
which necessitates a clear understanding of these relationships (Amadon, Rajkumar, and Kumar,
2021). Chermayeff and Alexander (1963) pioneered structural formulation techniques and they
outlined the links between these problems Diagram 14. Alexander focused on patterns in his
work Pattern Language (Alexander, 1977). Design Structure Matrices (DSM) is used in systems
engineering to represent component interactions (Samson and Peterson, 2010). Diagram 15,
shows an activity-based DSM for the creation of a soda bottle (McCord 1993). Reading across
rows identifies the other activities on which a given action depends for information. Black
squares represent the transmission of information or activity interdependence (Grady, 1994). The
interactions that occur in DSM differ from one project to the next and provide a taxonomy for
system element interactions based on four categories: spatial, energy, information, and material
(as illustrated in Table 3). They also provide a quantification scheme for these interactions, where
the square marks are replaced by numbers or colors Diagram 16, (Pimmler and Eppinger, 1994).

Diagram 13. Decomposition and formulation (source
(Alfaris, 2009).

Diagram 14. Issues share many connections are
grouped together (Chermayeff and Alexander, 1963).

Diagram 15. An activity-based DSM for a soda bottle
(McCord 1993).

Diagram 16. DSM (Pimmler & Eppinger, 1994).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

67

Table 3. Taxonomy for system element interactions (Pimmler and Eppinger, 1994).

Synthesis

Online Cambridge dictionary, defined synthesis as” the act of combining different ideas or
things to make a whole that is new and different from the items considered separately.” Synthesis
involves the use of abductive reasoning, which generate innovative concepts (Fei, 2019). It
involves decisions about arrangement, connections, forms (Papalambros and Wilde, 2000) and
the creation of physical and informational structures (Suh, 1990). (Eder, 2009) discusses the
cyclical nature of design engineering, where analysis and synthesis are interlinked processes that
inform the development of technical systems. Computational design synthesis has also
championed the use of generative design grammars as a means to simultaneously provide
structure and design freedom during synthesis (Campbell and Shea, 2014). Synthesis models
should have a generative mechanism, typically performed using parametric or algorithmic
descriptions (Alfaris, 2009). A design algorithm expresses a strategic approach to tractable
problems or a stochastic search for intractable problems (Terzidis, 2006). The connection
between form and performance should be included in the representation formalism. This provides
restrictions on permitted designs and ensures that the rules discard designs that do not comply
with constraints (Alfaris and Merello, 2008). Synthesis models require a geometric representation
(Alfaris, 2009). Advances in function-based and analogy-based synthesis have expanded the
range of potential solutions (Chakrabarti et al., 2011). As sown in the Diagram 17, the synthesis
model uses the original design parameters to generate a variety of design solutions through
internal operations. For example, in a curve or surface equation, parameters can be changed to
represent a family of curves or surfaces Figure 31, (Alfaris, 2009). In the conceptual design
phase, synthesis is key to explore and define design concepts. It allows architects to invent
transitions that lead to the description of artifacts (Kotsopoulos, 2005; Hartmann et al., 2018). By
generating a wide range of design alternatives, synthesis supports the innovation process and
enhances creativity in architectural design. It allows for the exploration of new forms and
solutions, contributing to the evolution of architectural practices (Helms and Shea, 2012).
Relationships (enable communication between the components), constraints (conditions that must

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

68

be met) and rules (to verify the logic) determine the behavior of the synthesis model. Methods
such as L-systems, CA and SG can be considered for capturing design relationships (Alfaris,
2009).

Diagram 17. Expected input and output of the synthesis model (Alfaris, 2009).

Figure 31. Parametric equations in geometry define curves (Alfaris, 2009).
Analysis, Evaluation and Optimization

The analysis model determines the behavior associated with each design and the evaluation
model attempts to take into account the multi-objective criteria of the design problem.
Optimization models are then used to determine the best designs (Alfaris, 2009). Online
Cambridge dictionary, defined analysis as “the act of studying or examining something in detail,
in order to discover or understand more about it.” Alexander, (1964) describes analysis as
determining how effectively a solution achieves its stated goals. Design challenges sometimes
involve numerous disciplines, each with its own analytical model. For example Figure 32,
(Averill, 2006), Figure 33, shows analysis models for examining the quality of light in different
spaces and the air flow around the building (Alfaris, 2009). Analysis models have different input
requirements and output accuracies Diagram 18, (Alfaris and Merello, 2008). Outputs can include
energy efficiency, structural integrity, and environmental impact, which are derived from the
analytical model's computations (Mitchell and Molloy, 2020). Analytical models are formal
representations that support reasoning and understanding in design processes (Jackson, 2009). In
architectural education, analytical models assist students in grasping design principles by
organizing elements hierarchically (Azmy, 2010). These models are represented in abstract

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

69

mathematical form by variables, parameters, equations and algorithms (Jacoby and Kowalik,
1980). Evaluation models make it easier to select good design by creating and comparing
alternatives Diagram 19, (Alfaris, 2009). Online Cambridge dictionary defined evaluation as “the
process of judging or calculating the quality, importance, amount or value of something.” Real-
world problems sometimes involve multiple, possibly conflicting goals. This results in a
collection of equivalent solutions rather than a single optimal solution (Abraham and Jain, 2005).
Evaluation models aid decision making in multi-objective design challenges. If decision-making
is delayed, the evaluation model becomes part of the optimization process (Alfaris, 2009). Online
Cambridge dictionary defined Optimization as “the process of making something as good or
effective as possible.” The chosen solution is determined by additional restrictions or objective
functions that integrate the search goals (Gries, 2004). Guass invented algorithm, which gave rise
to the term optimization. It serves as the basis for the science of optimization (Gray, 2018).
Optimization requires identifying performance criteria to maximize or minimize, such as cost or
efficiency, while adhering to constraints like physical laws and manufacturing limitations (Lam
and Chen, 2019). Optimization is the process of refining or fine-tuning a design or system based
on one or more performance criteria (Papalambros, 2000). The optimization process is
continuous, as architects must adapt designs based on evolving requirements and feedback
throughout the project lifecycle (Davis, 1997). An optimization model generates a new design
vector, which is then used as input to the synthesis model Diagram 20, (Alfaris, 2009). Multiple
objectives in design can be inherently conflicting, such as minimizing control effort (Sardahi,
2016). This shows that there are numerous optimal solutions and not just one model. Multi-
objective optimization integrates functional constraints, such as accessibility, into layout designs,
ensuring that components are both operational and maintainable (Song et al., 2023).

Diagram 18. Expected input and output of the
analysis model (Alfaris, 2009)

Diagram 19. Expected input and output of the
evaluation model (Alfaris, 2009)

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

70

Diagram 20. Expected input and output of the
optimization model (Alfaris, 2009)

Figure 32. Analysis model for daylight to assess the
quality of light in different spaces (Averill, 2006)

Figure 33. Analysis model to study of air flow around the building (Alfaris, 2009).
Methodology

The purpose of this research is to propose a comprehensive theoretical CD training
framework. The selected method is based on the Design Research Method (DRM) by (Blessing
and Chakrabarti, 2009), and research method conducted by (Vazquez, 2024) that merely
provided a restricted program in parametric design training. However comprehensive CD training
program had not been presented in that research. The DRM method is a framework in four stages:
1. Research Clarification 2. Descriptive Study I 3. Prescriptive Study and 4. Descriptive Study II.
This paper proposed 3 research stages and the prescriptive study is followed by a second
descriptive study that aims to implement and test the proposed approach will be done in further
studies.

 Research clarification and descriptive study which consists of a literature survey, followed by
a prescriptive study, in which an instructional method is proposed. The descriptive study, is
conducted through literature review on CD training and CD knowledge studies. The survey is
conducted by searching in several databases with the following terms: (“teaching method” OR
“pedagogical approach” OR “teaching strategy”) AND (“digital design” OR “computational
design” OR “parametric design” OR “generative design” OR “algorithmic design”). After
identifying the main articles in the area, an analysis was conducted. The outcome of the

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

71

descriptive study revealed that there is no specific comprehensive CD theoretical training
framework prior to its usage in the design studio, and each study focused on some aspects of CD
and concentrated on the use of software and coding (Austin and Qattan, 2016; Ostrowska-
Wawryniuk, Strzała, and Słyk, 2022; Shtepani and Yunitsyna, 2023). However, learning CD
necessitates theoretical knowledge (Caetano et al., 2020) that extends beyond software and
programming. Additionally library resources analyzed and important topics in this field identified
(DD and CD concepts, CD systems, system concept, CD system elements and CD design process
(Caetano et al., 2020; Michelle and Gemilang, 2022; El-Khaldi, 2007; Alfaris, 2009; Fasoulaki,
2008). Finally in third stage (prescriptive study), with the goal of overcoming the deficiencies of
the current educational program, this research will propose a comprehensive knowledge-based
training framework. The training framework consists of two phases: 1. Learning CD principles 2.
Learning an analysis of CD principles. In the first phase, topics such as DD and CD definition,
types of CD systems (Algorithmic, Parametric and Generative design), system concept,
prescriptive models and CD process were examined. Understanding CD concepts is necessary but
not sufficient. Therefore, in the second phase, CD systems and their components were analyzed
to identify differences. Additionally, integration of prescriptive models and CD process were
examined. Finally training framework is proposed. Research methodology is presented in
Diagram 21.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

72

Diagram 21. Research methodology (analyzing current state and proposing CD training framework)
(Source: Authors).

Analyzing library resoursces (CD knowledge)

Stage 3 :Prescriptive
Study

Stage 2: Descriptive Study

Analyzing current state of computational design training

This Research Goal :Proposing comprehensive theoretical training

Stage 1: Research
Clarification

searching in several databases and identifying the main articles

Previous Research Gap : Lack of comprehensive theoretical training

CD systems CD systems
elements

CD design
process

CD knowledge framework

System
concept

DD and CD
concepts

Analyzing library resoursces (CD training

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

73

Results and Discussion

Research clarification and Descriptive study

 Analysis of the current state of CD education and CD concepts

According to the previous research (Vazquez, 2024; Ostrowska-Wawryniuk, Strzała, and
Słyk, 2022; Lakhanpuria and Naik, 2023), as mentioned in Table 4, CD was partially taught in
the design studio, and the emphasis of these studies were on coding and software usage. A review
of internal articles (Mahmoudi and Naghizadeh, 2010; Poursistany et al. 2016; Asefi and Imani,
2017; Ahmadi Tabatabaie and Moosav, 2024), revealed that only the impact of information
technology and digital tools on architectural education have been examined and comprehensive
CD training program had not been studied. However architecture students should have a thorough
understanding of CD theory before applying it (Caetano et al., 2020). Some previous research
focused on GD (Bianconi and Filippucci, 2018) and PD (Lakhanpuria and Naik, 2023), however
it is obvious that students need to be familiar with AD (as fundamental concept) (El-Khaldi,
2007). A review of Research like (Caetano et al., 2020), (Michelle and Gemilang, 2022))
demonstrates the importance of CD and DD concepts. However, research in the Table 4, shows
that CD training research has generally focused on AD, PD, and GD methodologies, and the
underlying concept of CD itself has received little attention. CD methodologies have a systematic
framework ((El-Khaldi, 2007; Alfaris, 2009; Fasoulaki, 2008). However, this concept has not
been considered in previous education research. Additionally there are differences in CD
systems, as evidenced by CD-related research such as (Michelle and Gemilang, 2022; El-Khaldi,
2007; Fasoulaki, 2008) and previous CD training studies did not address distinctions. Prescriptive
models such as Archer (Archer, 1984) have been proposed and demonstrate the importance of the
design process. The architectural theorists, Alexander and Chermayeff studied design stages such
as decomposition and formulation (Alexander, 1964a; Chermayeff and Alexander, 1963).
Academic research, particularly at MIT, has also proposed a model for the CD process, which
includes steps such as decomposition, formulation, analysis, evaluation and optimization (Alfaris,
2009; Alfaris and Merello, 2008). But these concepts have been missed in previous CD training
research described in the Table 4. Based on the findings and in order to fill research gap (the lack
of a comprehensive CD training program), a comprehensive theoretical training framework on
Learning CD principles has been proposed in this research. These concepts have been
incorporated and examined in the upcoming section of the curriculum and main CD concepts
collected from literature analysis represented in Table 5.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

74

Table 4. Previous (CD) training research (Source: Authors).

Research CD
type

Research CD
type

Research CD
type

Research CD type

1 (Fischer, 2002) GD 7 (Yavuz &
Çelik, 2014) GD 13

(Lakhanpuria
& Naik,
2023)

PD 19 (Vazquez,
2024) PD and AD

2 (Karzer &
Matcha, 2009) PD 8 (Huang & Xu,

2015) GD 14
(Nazidizaji
& Safari,

2013)
AD 20

(Mahmoudi
&

Naghizadeh,
2010)

Information
technology

3
(Gürbüz,

Çağdaş, and
Alaçam, 2010)

GD 9 (Agkathidis,
2015) GD 15

(Austin &
Qattan,
2016)

AD 21
(Eynifar &
Hosseini
,2014)

Digital
technology

4 (Guidera,
2011)

GD
and
PD

10 (Abdelmohsen
et al., 2017) GD 16

(Peteinarelis
&

Yiannoudes,
2018)

PD
and
AD

22 (Poursistany
et al. 2016)

Digital
technology

5 (Knight, 2012) GD 11
(Bianconi &
Filippucci,

2018)
GD 17 (Vrouwe,et

al., 2020) PD
23

(Ahmadi
Tabatabaie
& Moosav,

2024)

Teaching
software

6 (Abdelmohsen,
2013)

GD
 12 (VAZ &

CELANI) GD 18 (Agirbas,
2022) PD

Table 5. CD concepts in pervious CD research

CD and DD concepts Cd and DD concepts and their distinctions (Michelle & Gemilang, 2022), (Caetano et al.,
2020)

CD systems

CD systems (AD, PD, GD) concepts and
their application

(Michelle & Gemilang, 2022),(Caetano et al.,
2020), (El-Khaldi, 2007); (Fasoulaki, 2008)

System concept

System concepts and its application in CD,
system components

(Alfaris, 2009), (Alfaris & Merello, 2008)

CD systems elements

Units, smallest units, rules, inheritance,
algorithm execution

(Caetano et al., 2020), (El-Khaldi, 2007),
(Fasoulaki, 2008)

CD design process

Prescriptive models and CD design process (Alexander, 1964a), (Chermayeff and
Alexander, 1963)

Prescriptive study (Training program)

a. First training phase (Learning computational design principles)
This research training program has two phases (1. Learning CD principles 2. Learning an

analysis of CD principles). During the initial training phase Diagram 22, it is critical to grasp the
CD principles, such as definitions of CD and DD (Caetano et al., 2020; Michelle and Gemilang,
2022), recognition of all types of CD systems (El-Khaldi, 2007; Michelle and Gemilang, 2022;
Fasoulaki, 2008). AD requires knowledge of algorithms, decomposition, and how to propose
solution for each part (Terzidis, 2004; Fried et al., 2018). PD requires knowledge of parameters,

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

75

variables and algorithms (Gu, Yu, and Behbahani, 2021). GD requires an understanding of
algorithms and the recognition of generative systems (Caetano et al., 2020). CD systems have
systemic structure (Alfaris, 2009; Alfaris and Merello, 2008) and understanding its concept and
components is critical. Recognizing design models, especially prescriptive models and CD design
process (Alfaris, 2009; Alfaris and Merello, 2008), is also necessary in the first phase of training.

Diagram 22. First training phase (Source: Authors).

b. Second training phase (learning an analysis of computational design principles)
The second phase of CD training Diagram 23, is the analysis of CD systems. Studies such as

(Caetano et al., 2020) examined CD and differentiated it from DD. As a result, knowing this
distinction is critical as the first step. Furthermore, research like (El-Khaldi, 2007; Michelle and
Gemilang, 2022; Fasoulaki, 2008; Caetano et al., 2020) examined CD methodologies and their
constituent elements and structures, emphasizing the distinctions between them. As a result, it is
critical to familiarize students with these distinctions and their basic components (application,
algorithm execution type, unit, rules, smallest unit and inheritance). CD follows a systematic
structure (El-Khaldi, 2007; Alfaris, 2009). As a result, knowing the systematic structure of CD
and comparing it to the concept of system is important in the following step. The next step is to
consider integrating prescriptive design models with CD process (Alfaris, 2009) in order to
produce a comprehensive design model. Both of them (prescriptive model and CD process) have
a systematic and algorithmic framework and can overcome each other's shortcomings (Alfaris,
2009).

7 4 6 3 1 2 5 9 8

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

76

Start
computational design

and digital design
and their distinction

(1)

computational
design systems and
their distinction (2)

Analyzing
computational design

systems (3)

the concept of system
and its similarity with
computational design

(4)

Design process
(Integration of

Prescriptive Models
and Computational
Design Process) (5)

End

Diagram 23. Second training phase (Source: Authors).

c. Proposing a comprehensive theoretical training framework
By combination of first and second phase, CD training program is proposed Diagram 24. CD

training program includes CD principles and their analysis. As Diagram 24, shows, Students
should comprehend CD and DD and their distinction 2. CD systems (algorithmic, generative,
parametric) and their distinctions 3. Analyzing CD systems (recognizing elements of CD systems
such as hierarchy, inheritance, rules) 4. the concept of system and the similarity of system and
CD 5. Design process (integration of Prescriptive Models and CD Process).

Diagram 24. Proposing a computational design training program (Source: Authors).

5 3 4 3 1 2 5

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

77

Algorithmic Design

Identifying the relationship
between algorithm and
design

Generative Design

• Absence of a direct relation
between the algorithm and
design

Parametric Design

• Identifying the relation
between parameters and
design

Digital Design (DD)

Computer aided

Computational Design (CD)
Computer aided

Manual

Computational Design, Digital Design, Computational Design Systems and their Distinction

DD and CD are widely used and Knowing their differences (Caetano et al., 2020) is helpful in
understanding them better and using them in education. Digital design requires computer tools.
CD requires calculations to develop designs and can be performed with or without computers
Diagram 25, (Caetano et al., 2020). It is important to understand the differences between CD
systems which are critical to maximizing their application. Algorithms are applied in algorithmic
and generative design systems but in generative design system, the relationship between the
algorithm and the output is difficult to discover. Parametric design systems are used when a
number of parameters affect the final design and algorithms can be used in parametric design
Diagram 26, (Caetano et al., 2020; El-Khaldi, 2007; Michelle and Gemilang, 2022; Fasoulaki,
2008).

Diagram 25. Distinction of (DD) and (CD) (Source: Authors).

Diagram 26. Distinction between computational design systems (Source: Authors).

Analyzing computational design systems

The concept of decomposition can be used to examine the structure of CD systems. This may
focus on the use of CD systems, rules, constituent units, the smallest unit, and inheritance (El-
Khaldi, 2007). Various design problems are solved and simulated through algorithmic design
(Terzidis, 2006) and parametric design (Schumacher, 2008; Tabadkani et al., 2019). Generative
systems use L-systems (Prusinkiewicz and Lindenmayer, 2012), CA (Adem and Çağdaş, 2020),
fractals (Mandelbrot, 1982; Patuano and Tara, 2020), and SG (Stiny and Gips, 1971; Tepavčević
and Stojaković, 2012; Eilouti, 2019). CD systems are rule-based (Caetano et al., 2020). AD
(Caetano and Leitão, 2021) and PD use numerous rules and generative systems use the
substitution rules. Units used in CD systems are different. Algorithmic and parametric units are
diverse, while L-systems and cellular automata use symbols. Fractals and shape grammar use

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

78

computational Design
(algorithmic and parametric

systems)

Computatio
nal Design
Sysytem

Algorithmi
c

Parametric

Application

various

Recreation

Algorithm
Excution

Various
(parallel,

sequential,
random)

Various
(parallel,

sequential,
random)

Rule

various

various

Unit

various

various

Smallest
Unit

various

various

Inheritance

Continuous

Continuous

computational design
(generative systems)

Computati
onal

design
sysytem

L System

Cellular
Automata

Fractal

Shape
Grammer

Applicatio
n

Plant
growth

simulation

Reproducti
on

simulation

Self-
similarity
simulation
in nature

Visual
computati

on
simulation

Algorithm
Excution

parallel

sequential

Various
(parallel,

sequential,
random)

Various
(parallel,

sequential,
random)

Rule

substitutio
n

substitutio
n

substitutio
n

substitutio
n

Unit

Symbol

Symbol

Symbol-
number

shape

Smallest
Unit

alphabet

cell

-

architectur
e basic

elements

Inheritanc
e

Discrete

Discrete

Discrete

Continuou
s

symbols, numbers and shapes. AD and PD use various smallest units, but L-systems, CA, and SG
use alphabet, cell, and basic architectural elements. Fractals do not have a smallest unit due to
substitution. Algorithmic and parametric design include inheritance, but L-systems, CA and
fractals do not include inheritance. However, shape grammar can use replacement rules to change
elements or parts while keeping the rest, allowing inheritance (El-Khaldi, 2007; Alfaris, 2009;
Michelle and Gemilang, 2022; Fasoulaki, 2008; Caetano et al., 2020). The characteristics of each
system (AD, PD and GD) such as their implementation, rules, units, smallest unit and inheritance
are presented in Diagram 27, 28.

Diagram 27. Computational design systems analysis (algorithmic and parametric design system) (Source:
Authors).

Diagram 28. Computational design system analysis (generative systems) (Source: Authors).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

79

Concept of system and its similarity with computational design

Systems are collections of units and institutions that work together to achieve common goals.
This concept could be used in CD systems (El-Khaldi, 2007, Alfaris, 2009). As showed in Table
6, System and CD have comparable principles such as component relations, hierarchy, rules, and
system execution (parallel, sequential, and random).

Table 6. Similarity of system and computational design (Source: Authors).
Computational design System Concept

  Relation between components

  Hierarchy

  Rules

  System execution (parallel,
sequential and random)

Design process (Integration of Prescriptive Models and Computational Design Process).

The algorithmic and systematic structure of the CD process includes decomposition,
formulation, synthesis, analysis, evaluation and optimization (Alfaris, 2009; Alfaris and Merello,
2008). In addition to the phases mentioned, the prescriptive models also include phases like
planning, data collection Table 7. By combining prescriptive models and the CD process,
shortcomings of these models can be minimized and a complete design process can be proposed
Diagram 29. These steps are not sequential and can be performed and repeated as the designer
considers (Alfaris, 2009).

Table 7. Similarity of prescriptive model and computational design process (Source: Authors).

Prescriptive models Computational
design process

Programming

Archer Eggert Asimov
Tom Marcus

and Tom
Mawer

Computational
design process

+
Data collection +

Identifying needs + +

Formulating the design problem (specifying
goals and constraints) +

Feasibility studies +

Data analysis (decomposition) + + + + +
Synthesis + + + +

Analysis of design alternatives + + + +

Evaluation of design alternatives + + + +
Optimization + +

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

80
of

fic
e

bu
ild

in
g

structure

Structural
system

Lateral bracing

Foundation

Geometry

envelope

Ventilation
system

Solar shading
system

Daylight
system

Geometry

of
fic

e
bu

ild
in

g

space organization

Circulatory system

Public access area

Special access area

Geometry

facilities
Electrical facility

Mechanical facility

Diagram 29. Design process (combination of prescriptive models and computational design process)
(Source: authors).

Decomposition is an important concept in algorithms and CD systems. Decomposition can be
used to decompose both the design product and the process. The Diagram 30,31, shows
decomposition of the office building components (envelope, structure, space organization,
facilities). The next step is to understand how they interact (formulation) (Alfaris, 2009). For
example, when designing a sport stadium, the relationship between material, structure, envelope
and space organization is crucial Figure 34, and Diagram 32. This makes it clear that the building
does not consist of independent individual components, but is a networked system of subsystems
in which all components interact with each other and create a mutual effect (Fasoulaki, 2008).
The synthesis phase is crucial in CD because it combines components to provide design
possibilities. By Using algorithmic, parametric and generative design methods, designers create a
variety of alternatives (Alfaris, 2009). In contrast to traditional methods, CD offers a wider range
of solutions (Agkathidis, 2015). The diagram shows an example of using a CD system to make
design decisions in various areas such as structure, envelope and floor plan design Diagram 33.

Diagram 30. Analysis of the envelope and
structure of an office building (Source: Authors)

Diagram 31. Analysis of spatial organization and
facilities of an office building (Source: Authors)

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

81

Struct
ure

materi
al

envelo
pe

space
organi
zation

computational design systems
application in the synthesis stage

Algorithmic

Envelope design
(I Caetano,

Garcia, Pereira,
& Leitão, 2020)

Parametric

Energy
optimized facade

design
(Tabadkani et al.,

2019)

L system

Envelope design
(A. A. F. Alfaris,

2009)

Cellular
Automata

Envelope design
(El-Khaldi,

2007)

Fractal

envelope design
with acoustic

goals (Sakai et
al., 2012)

Shape
Grammer

Floor plan
design(Haakonse
n, Rønnquist, &

Labonnote,
2023)

Figure 34. Allians Riviera stadium (Source:
Archdaily).

Diagram 32. Relationship between structure,
material, envelope and space organization in stadium

design (Source: Authors).

Diagram 33. Application of computational design systems in the synthesis phase (Source: Authors).

Before proceeding, all design decisions must be analyzed and evaluated (Alfaris, 2009; Alfaris
and Merello, 2008). Students should be able to analyze and evaluate design criteria such as goals
and restrictions. CD can be performed with or without a computer (Caetano et al., 2020). When
analyzing a building, accurate revision of plans, elevations, sections, openings, site plans,
installation problems, form analysis, function, structure, climate, acoustics, topography, analysis
of economic, social and cultural factors, historical records, obstacles and legal restrictions should
be taken into account (Ching, 2023). After analyzing and evaluating the design alternatives, the
selected alternative may need to be optimized (Alfaris, 2009). Optimization can be used in a
variety of goals including energy consumption, column spacing, and space organization. Training
in analysis, evaluation and optimization is presented in Table 8.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

82

Table 8. Training in analysis, evaluation and optimization in CD (Source: Authors).
1. Understanding the concept of analysis and evaluation
2. Ability to examine design constraints and objectives in design alternatives
3. Recognizing analysis and evaluation software
4. Understanding the concept of optimization
5. Ability to optimize the selected alternative based on design criteria
6. Recognizing optimization software

Conclusion

Computational design (CD) systems (Algorithmic, Parametric and Generative design systems)
have been widely used in architectural education during the last decade. Examining previous
research indicates that separate comprehensive framework for its training has not been proposed.
Previous research focused on programming, the use of software and some aspect of CD systems
in the design process. However, learning CD necessitates theoretical knowledge that extends
beyond software and programming. An extra course on theoretical topics can improve its use.
Therefore, this research proposes a framework for training theoretical knowledge in this field. In
the first and second stage of the research (research clarification and descriptive study), the
existing state of its training was reviewed and analyzed, and its deficiencies and shortcomings
were identified through the use of library resources. Additionally important concepts for
comprehending CD knowledge were identified, and in the third stage (prescriptive study), with
the goal of overcoming the deficiencies of the current CD training, a comprehensive framework
including two phases of 1. Learning CD principles 2. learning an analysis of CD principles is
proposed. This framework consists of topics ranging from basic to advanced, including: 1.
computational design and digital design and their distinction 2. CD systems (Algorithmic,
Generative and Parametric) and their distinctions 3. Analyzing CD systems (recognizing concepts
such as hierarchy, inheritance, rules and units in CD) 4. The concept of system and the similarity
of system and CD 5. Design process (integration of Prescriptive Models and CD Process). This
framework can gradually familiarize students with principles of CD systems and their analysis.
Results of this study can be applied as a framework for CD training.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the
original and subsequent drafts.

Data Availability Statement

 Not applicable

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

83

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The study was approved by the Ethics Committee of the Islamic Azad University, Sav.C. The
authors avoided data fabrication, falsification, plagiarism, and misconduct.

Funding

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

84

References
Abdelmohsen, S., Massoud, P., Tarabishy, S., & Hassab, A. (2017). Rule-based vs. intuition-based

generative design: an inquiry into the digital chain concept in undergraduate architectural education.
International Journal of Parallel, Emergent and Distributed Systems, 32(sup1), S199-S209.

Abdelmohsen, S. M. (2013). Reconfiguring architectural space using generative design and digital
fabrication: A project-based course. Paper presented at the Proceedings of the 17th Conference of
the Iberoamerican Society of Digital Graphics.

Abraham, A., & Jain, L. (2005). Evolutionary multi objective optimization. In Evolutionary multi
objective optimization (pp. 1-6): Springer.

Adem, P. Ç., & Çağdaş, G. (2020). Computational Design Thinking through Cellular Automata:
Reflections from Design Studios. Journal of Design Studio, 2(2), 71-83.

Agirbas, A. (2022). A teaching methodology on the combination of architectural tradition and parametric
design: A case study with birdhouses. International Journal of Islamic Architecture, 11(1), 149-168.

Agkathidis, A. (2015). Generative design methods. In Proceedings of eCAADe (pp. 47-55).

Ahmadi Tabatabaie, S. M. A., & Moosav, S. M. (2024). The Impact of Software Pedagogy on
Architectural Creativity: Finding the Appropriate Method and Time for Teaching Software to
Architecture Students. Technology of Education Journal (TEJ), 18(1).

Alexander, C. (1964a). Notes on the Synthesis of Form (Vol. 5). Harvard University Press.

Alexander, C. (1964b). Notes on the Synthesis of Form (Vol. 5): Harvard University Press.

Alexander, C. (1977). A pattern language: towns, buildings, construction. Oxford university press.

Alfaris, A., & Merello, R. (2008). The generative multi-performance design system. ACADIA 08 õ
Silicon+ Skin õ Biological Processes and Computation, 448-457.

Alfaris, A. A. F. (2009). Emergence through conflict: the Multi-Disciplinary Design System (MDDS).
(Doctoral dissertation, Massachusetts Institute of Technology.

Amadon, G., Rajkumar, P., & Kumar, M. (2021). U.S. Patent No. 11,093,661. Washington, DC: U.S.
Patent and Trademark Office.

Archer, L. B. (1984). Systematic method for designers. Design, 56-59.

Ashlock, D. A., Gent, S. P., & Bryden, K. M. (2005). Evolution of l-systems for compact virtual landscape
generation. In 2005 IEEE Congress on Evolutionary Computation (Vol. 3, pp. 2760-2767. IEEE.

Ashour, S. F., & Gogo, S. M. (2024). Boosting the Design Process Using a Proposed Methodology Based
on Computational Design. ERJ. Engineering Research Journal, 47(2), 207-215.

Ashrafi, N., & Duarte, J. P. (2017). A shape-grammar for double skin facades. Sharing of Computable
Knowledge, 471.

Asimow, M. (1962). Introduction to design. (No Title).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

85

Austin, M., & Qattan, W. (2016). I'M A visual thinker: Rethinking algorithmic education for architectural
design. In CAADRIA 2016, 21st International Conference on Computer-Aided Architectural Design
Research in Asia-Living Systems and Micro-Utopias: Towards Continuous Designing.

Averill, M. L. (2006). Simulation Modeling and Analysis with Expertfit Software. In USA: Mc Graw Hill
International.

Azmy, A. M. (2010). An Analytical Model for Teaching Architectural Building Design. In 2010
Developments in E-systems Engineering (pp. 101-106). IEEE.

Banerjee, S., Easwaramoorthy, D., & Gowrisankar, A. (2021). Fractal functions, dimensions and signal
analysis. Cham: Springer.

Bankman, I. (Ed.). (2008). Handbook of medical image processing and analysis. Elsevier.

Batty, M., & Longley, P. A. (1994). Fractal cities: a geometry of form and function. Academic press.

Bianconi, F., & Filippucci, M. (2018). Generative education: thinking by modeling/modeling by thinking.
In Congreso Internacional de Expresión Gráfica Arquitectónica (pp. 1009-1020). Cham: Springer
International Publishing..

Blessing, L. T., & Chakrabarti, A. (2009). DRM, A design research methodology. London: Springer
London.

Bovill, C., & Bovill, C. (1996). Fractal geometry in architecture and design.

Caetano, I., Garcia, S., Pereira, I., & Leitão, A. (2020). Creativity Inspired by Analysis: an algorithmic
design system for designing structurally feasible façades. In 25th International Conference on
Computer-Aided Architectural Design Research in Asia, CAADRIA 2020 (pp. 599-608). The
Association for Computer-Aided Architectural Design Research in Asia (CAADRIA)..

Caetano, I., & Leitão, A. (2021). Mathematically developing building facades: an algorithmic framework.
In Formal Methods in Architecture: Proceedings of the 5th International Symposium on Formal
Methods in Architecture (5FMA), Lisbon 2020 (pp. 3-17). Cham: Springer International Publishing.

Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining parametric,
generative, and algorithmic design. Frontiers of architectural research, 9(2), 287-300.

Campbell, M. I., & Shea, K. (2014). Computational design synthesis. AI EDAM, 28(3), 207-208.

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N. V., & Wood, K. L. (2011).
Computer-based design synthesis research: an overview.

Chen, C. Y. (2020). Algorithmic design for residential housing concept: Cologne-Mülheim: generating
design plan and floor plan in four steps: transform, select, determine and extrude (Doctoral
dissertation, Wien).

Chermayeff, S., & Alexander, C. (1963). Community and privacy: Toward a new architecture of humanism
(Vol. 474): Garden City, NJ: Anchor Books, Doubleday.

Ching, F. D. (2023). Architecture: Form, space, and order. John Wiley & Sons.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

86

Chiou, S. C., & Krishnamurti, R. (1995). The grammar of Taiwanese traditional vernacular dwellings.
Environment and planning B: planning and design, 22(6), 689-720.

Contini, A. (2007). Critical Phenomena in Natural Sciences. Chaos, Fractals, Self Organization and
Disorder: Concepts and Tools. In JSTOR.

Cox, T., & d’Antonio, P. (2016). Acoustic absorbers and diffusers: theory, design and application. CRC
press.

DAG, D. A. G., & Ethic, W. (2000). Introduction to systems engineering. State College, PA, USA:
Citeseer.

Davis, D. (1997). Design as a Process the Project Development Process. In 1997 Annual Conference (pp.
2-130).

de Oliveira, M. N. P., & Celani, M. G. C. (2019). Cellular automata: Towards possible applications in
urban design education and practice. Oculum Ensaios: revista de arquitetura e urbanismo.

De Souza, M. A. F., & Ferreira, M. A. G. V. (2002). Designing reusable rule-based architectures with
design patterns. Expert Systems with Applications, 23(4), 395-403.

Doe, R. (2018). Facilitating integration of computational design processes in the design and production of
prefabricated homes. Architectural Science Review, 61(4), 246-254.

Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for owners, managers,
designers, engineers and contractors. John Wiley & Sons.

Eder, W. E. (2009). Analysis, synthesis and problem solving in design engineering. In DS 58-2:
Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 2, Design
Theory and Research Methodology, Palo Alto, CA, USA, 24.-27.08. 2009 (pp. 13-24).

Ediz, Ö., & Çağdaş, G. (2007). A computational architectural design model based on fractals. Open house
international, 32(2), 36-45.

Eggert, R. (2005). Engineering design. Pearson/Prentice Hall.

Eilouti, B. (2019). Shape grammars as a reverse engineering method for the morphogenesis of
architectural façade design. Frontiers of Architectural Research, 8(2), 191-200.

El-Khaldi, M. M. S. (2007). Mapping boundaries of generative systems for design synthesis (Doctoral
dissertation, Massachusetts Institute of Technology,

Elghandour, A., Saleh, A., Aboeineen, O., & Elmokadem, A. (2016). Using parametric design to optimize
building’s façade skin to improve indoor daylighting performance. In Proceedings of the 3rd
IBPSA-England Conference BSO.

Eppinger, S. D., & Ulrich, K. (1995). Product design and development.

Ettestad, D., & Carbonara, J. (2018). The Sierpinski triangle plane. Fractals, 26(01), 1850003.

Fasoulaki, E. (2008). Integrated design: A generative multi-performative design approach (Doctoral
dissertation, Massachusetts Institute of Technology).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

87

Fatai, T. (2024). A Research on the use of Algorithmic Design Methods in the field of Architectural
Design. ScienceOpen Preprints.

Fei, D. (2019). Abductive thinking, conceptualization, and design synthesis. In International Conference
on Human Systems Engineering and Design: Future Trends and Applications (pp. 101-104). Cham:
Springer International Publishing.

Fernstrom, C. (1988). Design considerations for process-driven software environments. In Proceedings of
the 4th international software process workshop on Representing and enacting the software process
(pp. 65-67).

Fischer, T. (2002). Computation-universal voxel automata as material for generative design education. In
Proceedings of the 5th Conference and Exhibition on Generative Art (pp. 10-1).

Fischer, T., & Herr, C. M. (2001). Teaching generative design. In Proceedings of the 4th Conference on
Generative Art (pp. 147-160). Politechnico di Milano University Milan..

Flake, G. W. (2000). The computational beauty of nature: Computer explorations of fractals, chaos,
complex systems, and adaptation. MIT press.

Fried, D., Legay, A., Ouaknine, J., & Vardi, M. Y. (2018). Sequential relational decomposition. In
Proceedings of the 33rd annual ACM/IEEE Symposium on Logic in computer science (pp. 42-441).

Furtado, G. (2012). Dealing with Information, Complex Dynamics and Organizations: Notes on
Architecture, Systems Research and Computational Sciences. Nexus Network Journal, 14(1), 3-15.

Gogolla, M., & Selic, B. (2020). On teaching descriptive and prescriptive modeling. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings (pp. 1-9).

Grady, J. O. (1994). System integration (Vol. 5): CRC press.

Granadeiro, V., Duarte, J. P., Correia, J. R., & Leal, V. M. (2013). Building envelope shape design in early
stages of the design process: Integrating architectural design systems and energy simulation.
Automation in Construction, 32, 196-209.

Granadeiro, V., Duarte, J. P., & Palensky, P. (2011). Building envelope shape design using a shape
grammar-based parametric design system integrating energy simulation. In IEEE Africon'11 (pp. 1-
6). IEEE.

Gray, J. (2018). Gauss’s Disquisitiones Arithmeticae. In A History of Abstract Algebra: From Algebraic
Equations to Modern Algebra (pp. 37-47). Cham: Springer International Publishing.

Gries, M. (2004). Methods for evaluating and covering the design space during early design development.
Integration, 38(2), 131-183.

Gu, N., Yu, R., & Behbahani, P. A. (2021). Parametric design: Theoretical development and algorithmic
foundation for design generation in architecture. Handbook of the Mathematics of the Arts and
Sciences, 1-22.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

88

Guerguis, M., Eikevik, L., Obendorf, A., Tryggestad, L., Enquist, P., Lee, B., . . . Biswas, K. (2017).
Algorithmic design for 3D printing at building scale. International Journal of Modern Research in
Engineering and Technology, 2(1).

Guidera, S. (2011). Conceptual design exploration in architecture using parametric generative computing:
a case study. In 2011 Asee Annual Conference & Exposition (pp. 22-368).

Gürbüz, E., Çağdaş, G., & Alaçam, S. (2010). A generative design model for Gaziantep’s traditional
pattern. In Proceedings of the 28th Conference on Education of Computer Aided Architectural
Design in Europe (pp. 841-849). ETH Zurich.

Gurcan Bahadir, C. G., & Tong, T. (2025). Computational approaches to space planning: A systematic
review of enhancing architectural layouts. International Journal of Architectural Computing,
14780771241310215.

Gürer, E., Alaçam, S., & Çağdaş, G. (2012). A Dynamic Methodology for Embedding Generative System
Approaches in Architectural Design Education. In ICONARCH International Congress of
Architecture and Planning: Architecture and Technology (pp. 368-374).

Haakonsen, S. M., Rønnquist, A., & Labonnote, N. (2023). Fifty years of shape grammars: A systematic
mapping of its application in engineering and architecture. International Journal of Architectural
Computing, 21(1), 5-22.

Hartmann, C., Chenouard, R., Mermoz, E., & Bernard, A. (2018). A framework for automatic architectural
synthesis in conceptual design phase. Journal of Engineering Design, 29(11), 665-689.

Helms, B., & Shea, K. (2012). Computational synthesis of product architectures based on object-oriented
graph grammars. Journal of Mechanical Design, 134(2).

Herr, C. M., & Ford, R. C. (2015). Adapting cellular automata as architectural design tools. In Emerging
Experiences in the Past, Present and Future of Digital Architecture: Proceedings of the 20th
CAADRIA conference (pp. 169-178).

Huang, W., & Xu, W. (2015). Generative Design Begins with Physical Experiment. In Tsinghua University
Forum.

Humppi, H. (2015). Algorithm-Aided Building Information Modeling. In Complexity & simplicity–
Proceedings of the 34th eCAADe conference (pp. 601-609).

Indraprastha, A. (2018). Learning to Know and Think: Computing for Architecture Course. In SHS Web of
Conferences (Vol. 41, p. 05001). EDP Sciences.

Jabi, W., Soe, S., Theobald, P., Aish, R., & Lannon, S. (2017). Enhancing parametric design through non-
manifold topology. Design Studies, 52, 96-114.

Jackson, M. (2009). Some notes on models and modelling. In Conceptual Modeling: Foundations and
Applications: Essays in Honor of John Mylopoulos (pp. 68-81). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Jacoby, S. L., & Kowalik, J. S. (1980). Mathematical modeling with computers. Prentice Hall.

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

89

Januszkiewicz, K., & Paszkowska-Kaczmarek, N. (2023). Generative and Evolutionary Models in the
Design of Architectural Form-Insights from History. Architecturae et Artibus, 15(3), 11-38.

Kalay, Y. E. (2004). Architecture's new media: Principles, theories, and methods of computer-aided
design. MIT press.

Karzer, R., & Matcha, H. (2009). Experimental design-build: teaching parameter-based design. In
Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings]
(pp. 153-158).

Kazemi, L. (2019). Application of modular system for innovation buildings architectural design.

Khamis, A. A., Ibrahim, S. A., Khateb, M. A., Abdel-Fatah, H., & Barakat, M. A. (2022). Introducing the
Architecture Parametric Design Procedure: From Concept to Execution. In IOP Conference Series:
Earth and Environmental Science (Vol. 1056, No. 1, p. 012004). IOP Publishing.

Knight, T. (2000). Introduction to shape grammars. In Lecture Notes presented at the MIT, MIT/Miyagi
Workshop.

Knight, T. (2012). Slow computing: Teaching generative design with shape grammars. In Computational
Design Methods and Technologies: Applications in CAD, CAM and CAE Education (pp. 34-55). IGI
Global.

Knight, T. W. (1981). The forty-one steps. Environment and planning B: planning and design, 8(1), 97-
114.

Kobyshev, N., Riemenschneider, H., Bodis-Szomoru, A., & Van Gool, L. (2016). Architectural
decomposition for 3D landmark building understanding. In 2016 IEEE Winter Conference on
Applications of Computer Vision (WACV) (pp. 1-10). IEEE.

Kotsopoulos, S. D. (2005). Constructing design concepts: A computational approach to the synthesis of
architectural form.

Koyama, Y. (2021). Introduction to computational design. In Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems (pp.1-4).

Lakhanpuria, H., & Naik, M. (2023). Incorporating Problem-Based Learning for Promoting Parametric
Design Thinking in Architecture Studios: Insights from an Experiment in India. Journal of the
International Society for the Study of Vernacular Settlements, 10(10), 379-392.

Lam, R. H., & Chen, W. (2019). Process Design Optimization. In Biomedical Devices: Materials, Design,
and Manufacturing (pp. 329-368). Cham: Springer International Publishing.

Leeds, S. (1977). George Boolos and Richard Jeffrey. Computability and logic. Cambridge University
Press, New York and London1974, x+ 262 pp. The Journal of Symbolic Logic, 42(4), 585-586.

Leung, A. Y. T., Wu, G. R., & Zhong, W. F. (2004). Exterior problems of acoustics by fractal finite
element mesh. Journal of sound and vibration, 272(1-2), 125-135.

Lindenmayer, A. (1968). Mathematical models for cellular interactions in development I. Filaments with
one-sided inputs. Journal of theoretical biology, 18(3), 280-299.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

90

Littlejohn, S. W., & Foss, K. A. (2010). Theories of human communication. Waveland press.

Liu, Y., Corcoran, J., & Feng, Y. (2020). Urban Cellular Automata.

Liu, Y., & Herr, C. M. (2023). Cellular Automata as Design Tools for Artificial Ecologies. In xArch–
creativity in the age of digital reproduction symposium (pp. 42-49). Singapore: Springer Nature
Singapore.

Loi, C., & Cournede, P. H. (2008). Generating functions of stochastic L-systems and application to models
of plant development. Discrete Mathematics & Theoretical Computer Science, (Proceedings).

Lorenz, W. E. (2011). FRACTAL GEOMETRY OF ARCHITECTURE: Fractal Dimension as a
connection between Fractal Geometry and Architecture. In Biomimetics--Materials, Structures and
Processes: Examples, Ideas and Case Studies (pp. 179-200). Berlin, Heidelberg: Springer Berlin
Heidelberg.

M Rocker, I. (2006). When code matters. Architectural Design, 76(4), 16-25.

Maher, M. L. (1990). Process models for design synthesis. AI magazine, 11(4), 49-49.

Mandelbrot, B. B. (1982). The fractal geometry of nature. NY: Freeman.

Mark, E. (2008). Animated parametric rapid prototyping. In the Proceedings of the 26th eCAADe
Conference, Antwerpen, Belgium (pp. 897-904).

Markus, T. A. (1969). The role of building performance measurement and appraisal in design method.
Design methods in Architecture, 6(7), 109-117.

Maver, T. W. (1970). Appraisal in the building design process. Emerging methods in environmental design
and planning. MIT Press (Cambridge, MA).

Mayatskaya, I., Yazyeva, S., Gatiev, M., Kuznetsov, V., Klyuev, S., & Sabitov, L. (2022). Application of
Fractal Methods in the Design of Modern Structures. In International Scientific Conference
Industrial and Civil Construction (pp. 414-422). Cham: Springer Nature Switzerland.

McCormack, J. (2004). Generative modelling with timed L-systems. In Design Computing and
Cognition’04 (pp. 157-175). Dordrecht: Springer Netherlands.

Michelle, B., & Gemilang, M. P. (2022). A bibliometric analysis of generative design, algorithmic design,
and parametric design in architecture. Journal of Artificial Intelligence in Architecture, 1(1), 30-40.

Middya, U., & Luss, D. (1994). Impact of global interactions on patterns in a simple system. The Journal
of chemical physics, 100(9), 6386-6394.

Miraglia, S. (2014). Systems architectures and innovation: The modularity-integrality framework.
Cambridge Service Alliance, Working Paper.

Mitchell, J. W., & Molloy, I. P. (2020). Complete energy analytical model building information modeling
(BIM) integration. U.S. Patent No. 10,628,535. 21 Apr.2020.

Mitchell, W. J., & Terzidis, K. (2004). Expressive form: A conceptual approach to computational design.
Routledge.

Moretti, L. (1971). Ricerca matematica in architettura e urbanistica. Moebuis IV, 1, 30-53.

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

91

Moussavi, F. (2009). The function of form: Actar, Barcelona.

Mulaik, S. A. (2009). Foundations of factor analysis. CRC press.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural modeling of buildings. In
ACM SIGGRAPH 2006 Papers (pp. 614-623).

Ng, C. S., Chen, C. H., & Sathikh, P. M. (2024). A procedural approach based on cellular automata for the
generation of spatial layout designs. International Journal of Architectural Computing,
14780771241299596.

Ostrowska-Wawryniuk, K., Strzała, M., & Słyk, J. (2022). Form Follows Parameter: Algorithmic-
Thinking-Oriented Course for Early-stage Architectural Education. Nexus Network Journal, 24(2),
503-522.

Ostwald, M. J. (2001). “Fractal architecture”: Late twentieth century connections between architecture and
fractal geometry. Nexus Network Journal, 3(1), 73-84.

Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory, knowledge, models
and medium. Design studies, 29(2), 99-120.

Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design
studies, 52, 4-39.

Ozkar, M. (2017). Rethinking basic design in architectural education: foundations past and future.
Routledge.

Papalambros, P. Y. (2000). Extending the optimization paradigm in engineering design. In Proc 3rd Int.
Symp. Tools Meth. Compet. Engineer. Delft.

Papalambros, P. Y., & Wilde, D. J. (2000). Principles of optimal design: modeling and computation.
Cambridge university press

Patt, T. (2015). Generative masterplanning inspired by cellular automata with context‑specific
tessellations. EDUCATION AND RESEARCH IN COMPUTER AIDED ARCHITECTURAL
DESIGN IN EUROPE, 33, 461-466.

Patuano, A., & Tara, A. (2020). Fractal geometry for landscape architecture: review of methodologies and
interpretations. Journal of Digital Landscape Architecture, 5(10).

Peitgen, H. O., Jürgens, H., Saupe, D., & Feigenbaum, M. J. (2004). Chaos and fractals: new frontiers of
science (Vol. 106, pp. 560-604). New York: Springer.

Pérez García, A. J., & Gómez Martínez, F. (2010). Natural structures: strategies for geometric and
morphological optimization. In Symposium of the International Association for Shell and Spatial
Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of
Shell and Spatial Structures: Proceedings. Editorial Universitat Politècnica de València.

Peteinarelis, A., & Yiannoudes, S. (2018). Parametric Models and Algorithmic Thinking in Architectural
Education. In Proceedings of the International Conference on Education and Research in Computer
Aided Architectural Design in Europe.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

92

Pimmler, T. U., & Eppinger, S. D. (1994). Integration analysis of product decompositions. In International
Design Engineering Technical Conferences and Computers and Information in Engineering
Conference (Vol. 12822, pp. 343-351). American Society of Mechanical Engineers.

Prusinkiewicz, P., Cieslak, M., Ferraro, P., & Hanan, J. (2018). Modeling plant development with L-
systems. In Mathematical modelling in plant biology (pp. 139-169). Cham: Springer International
Publishing.

Prusinkiewicz, P., & Lindenmayer, A. (2012). The algorithmic beauty of plants. Springer Science &
Business Media.

Purnomo, K. D., Sari, N. P. W., Ubaidillah, F., & Agustin, I. H. (2019). The construction of the Koch curve
(n, c) using L-system. In AIP Conference Proceedings (Vol. 2202, No. 1, p. 020108). AIP
Publishing LLC.

Rian, I. M., & Asayama, S. (2016). Computational Design of a nature-inspired architectural structure
using the concepts of self-similar and random fractals. Automation in Construction, 66, 43-58.

Rian, I. M., Callegary, G., & Spinelli, A. (2015). Transforming Nature's Forest into Manmade Forest:
Fractal‐Based Computational Morphogenesis Approach for a Dendriform Pavilion Design.
Proceedings of the IASS 2015 Tokyo Colloquium on Bio-Based and Bio-Inspired Environmentally
Compatible Structures. Tokyo Denki University, Tokyo, Japan.

Rian, I. M., Park, J. H., Ahn, H. U., & Chang, D. (2007). Fractal geometry as the synthesis of Hindu
cosmology in Kandariya Mahadev temple, Khajuraho. Building and environment, 42(12), 4093-
4107.

Rian, I. M., & Sassone, M. (2014). Tree-inspired dendriforms and fractal-like branching structures in
architecture: A brief historical overview. Frontiers of Architectural Research, 3(3), 298-323.

Sammer, M., Leitão, A., & Caetano, I. (2019). From visual input to visual output in textual programming.
In Proceedings of the 24th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA) (Vol. 1, pp. 645-654).

Samson, F. P., & Peterson, T. A. (2010). A Systems Engineering and Integration Methodology for
Complex Systems. In Ground Vehicle Systems Engineering Technology Symposium (pp. 1-8).

Sardahi, Y. (2016). Multi-objective optimal design of control systems (Doctoral dissertation, University of
California, Merced).

Schmidt, J. W., & Taylor, R. E. (1970). Simulation and analysis of industrial systems (Vol. 20): RD Irwin.

Schumacher, P. (2008). Parametricism as style-parametricist manifesto. 11th Architecture Biennale,
Venice, 14.

Schumacher, P., & Krish, S. (2010). Teaching Generative Design Strategies for Industrial Design. Design,
July, 1-4.

Shelden, D. R. (2002). Digital surface representation and the constructability of Gehry's architecture.
(Doctoral dissertation, Massachusetts Institute of Technology).

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

93

Shtepani, E., & Yunitsyna, A. (2023). Application of 3D Printing for the Parametric Models Fabrication in
the Architectural Education. In 1st International Conference on Frontiers in Academic Research
(pp. 155-161).

Soliman, S., Taha, D., & El Sayad, Z. (2019). Architectural education in the digital age: Computer
applications: Between academia and practice. Alexandria Engineering Journal, 58(2), 809-818.

Song, X., Poirson, E., Ravaut, Y., & Bennis, F. (2023). Multi-objective optimization of layout with
functional constraints. Optimization and Engineering, 24(3), 1849-1882.

Št'ava, O., Beneš, B., Měch, R., Aliaga, D. G., & Krištof, P. (2010). Inverse procedural modeling by
automatic generation of L‐systems. In Computer graphics forum (Vol. 29, No. 2, pp. 665-674).
Oxford, UK: Blackwell Publishing Ltd.

Stiny, G. (2006). Shape: talking about seeing and doing. MIt Press.

Stiny, G. (2022). Shapes of Imagination: calculating in Coleridge's Magical realm. MIT Press.

Stiny, G., & Gips, J. (1971). Shape grammars and the generative specification of painting and sculpture. In
IFIP congress (2) (Vol. 2, No. 3, pp. 125-135).

Stiny, G., & Mitchell, W. J. (1980). The grammar of paradise: on the generation of Mughul gardens.
Environment and planning B: planning and design, 7(2), 209-226.

Stotz, I., Gouaty, G., & Weinand, Y. (2009). Iterative geometric design for architecture. Journal of the
International Association for Shell and Spatial Structures, 50(1), 11-20.

Suh, N. P. (1990). The principles of design: Oxford university press. New York, Oxford.

Tabadkani, A., Shoubi, M. V., Soflaei, F., & Banihashemi, S. (2019). Integrated parametric design of
adaptive facades for user's visual comfort. Automation in Construction, 106, 102857.

Tepavčević, B., & Stojaković, V. (2012). Shape grammar in contemporary architectural theory and design.
Facta Universitatis-series: Architecture and Civil Engineering, 10(2), 169-178.

Terzidis, K. (2004). Algorithmic design: a paradigm shift in architecture. In Architecture in the Network
Society [22nd eCAADe Conference Proceedings/ISBN 0-9541183-2-4] Copenhagen (Denmark) (pp.
201-207).

Terzidis, K. (2006). Algorithmic architecture. Routledge.

Touloupaki, E., & Theodosiou, T. (2017). Optimization of building form to minimize energy consumption
through parametric modelling. Procedia environmental sciences, 38, 509-514.

Toussi, H. E. (2020). The application of evolutionary, generative, and hybrid approaches in architecture
design optimization. NEU Journal of Faculty of Architecture (NEU-JFA), 2(2), 1-20.

Toussi, H. E., Etesam, I., & Mahdavinejad, M. (2021). The Application of Evolutionary Algorithms and
Shape Grammar in the Design Process Based upon Traditional Structures. The Monthly Scientific
Journal of Bagh-e Nazar, 18(95), 19-36.

Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research policy, 24(3), 419-
440.

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

94

Ulrich, K. T., & Eppinger, S. D. (2016). Product design and development. New York: McGraw-hill.

Ulrich, K. T., & Seering, W. P. (1990). Function sharing in mechanical design. Design Studies, 11(4), 223-
234.

Vande Zande, R. (2006). The design process of problem solving. Academic Exchange Quarterly, 10(4),
150-154.

VAZ, C. E. V., & CELANI, M. G. C. Developing knowledge based design education method: using
generative systems and ontology to teach landscape design.

Vazquez, E. (2024). Teaching parametric design: fostering algorithmic thinking through incomplete
recipes. Open House International, 49(4), 736-751.

Vyzantiadou, M. A., Avdelas, A. V., & Zafiropoulos, S. (2007). The application of fractal geometry to the
design of grid or reticulated shell structures. Computer-Aided Design, 39(1), 51-59.

Wahbeh, W. (2017). Building skins, parametric design tools and BIM platforms. In Conference
Proceedings of the 12th Conference of Advanced Building Skins (pp. 1104-1111).

Whitney, D., Crawley, E., de Weck, O., Eppinger, S., Magee, C., Moses, J., . . . Wallace, D. (2004). The
influence of architecture in engineering systems. Engineering Systems Monograph, MIT
Engineering Systems Division, March.

Whitney, D. E. (1996). Why mechanical design cannot be like VLSI design. Research in Engineering
Design, 8(3), 125-138.

Wolfram, S. (2002). A new kind of science (Vol. 5). Wolfram media Champaign, 80.

Wong, M. L., Cleland, C. E., Arend Jr, D., Bartlett, S., Cleaves, H. J., Demarest, H., . . . Hazen, R. M.
(2023). On the roles of function and selection in evolving systems. Proceedings of the National
Academy of Sciences, 120(43), e2310223120.

Wu, J. (2013). Hierarchy theory: an overview. Linking ecology and ethics for a changing world: Values,
philosophy, and action, 281-301.

Yavuz, A. Ö., & Çelik, T. (2014). Proposing A Generative Model Developed by Ecologic Approaches In
Architectural Design Education. Procedia-Social and Behavioral Sciences, 143, 330-333.

Yu, J., & Min, D. (2022). PL-System: Visual representation of pattern language using L-System. In POST-
CARBON-Proceedings of the 27th CAADRIA Conference (pp. 201-210).

Zhang, M. (2020). The applications of parametric design in green building. In IOP Conference Series:
Earth and Environmental Science (Vol. 567, No. 1, p. 012033). IOP Publishing.

Zhang, Q., Deniaud, I., Caillaud, E., & Baron, C. (2012). Descriptive model for interpreting innovative
design. In International Design Conference 2012 (pp. 343-353).

Cambridge dictionary. Algorithmic. https://dictionary.cambridge.org/dictionary/english/algorithmic

Cambridge Dictionary. Analysis. https://dictionary.cambridge.org/dictionary/english/analysis

Cambridge Dictionary. Evaluation. https://dictionary.cambridge.org/dictionary/english/evaluation

https://dictionary.cambridge.org/dictionary/english/algorithmic
https://dictionary.cambridge.org/dictionary/english/analysis
https://dictionary.cambridge.org/dictionary/english/evaluation

Comprehensive Theoretical Training Framwork | Ramyar, M., Bavar, C., & Alimohammadi, P.

95

Cambridge dictionary. Generative. https://dictionary.cambridge.org/dictionary/english/generative

Cambridge dictionary. Optimization. https://dictionary.cambridge.org/dictionary/english/optimization

Cambridge dictionary. Parametric. https://dictionary.cambridge.org/dictionary/english/parametric

Cambridge dictionary. System. https://dictionary.cambridge.org/dictionary/english/system

Cambridge dictionary. Synthsis. https://dictionary.cambridge.org/dictionary/english/synthesis

https://www.archdaily.com/896433/morpheus-hotel-zaha-hadid-architects

https://dictionary.cambridge.org/dictionary/english/generative
https://dictionary.cambridge.org/dictionary/english/optimization
https://dictionary.cambridge.org/dictionary/english/parametric
https://dictionary.cambridge.org/dictionary/english/system
https://dictionary.cambridge.org/dictionary/english/synthesis
https://www.archdaily.com/896433/morpheus-hotel-zaha-hadid-architects

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025

96

	Proposing a Comprehensive Theoretical Training Framework (Concepts, Elements and Design Process) for Computational Design (Algorithmic, Parametric and Generative Design Systems)
	Introduction
	Theoretical Literature
	Computational design process
	Methodology
	Results and Discussion
	Research clarification and Descriptive study
	Analysis of the current state of CD education and CD concepts
	Prescriptive study (Training program)
	a. First training phase (Learning computational design principles)
	b. Second training phase (learning an analysis of computational design principles)
	c. Proposing a comprehensive theoretical training framework

	Computational Design, Digital Design, Computational Design Systems and their Distinction
	Analyzing computational design systems
	Concept of system and its similarity with computational design
	Design process (Integration of Prescriptive Models and Computational Design Process).
	Conclusion
	Author Contributions
	Data Availability Statement
	Acknowledgements
	Ethical considerations
	Funding
	Conflict of interest
	References

