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In recent decades, computer technologies like computational design have made an 
impact on architectural design. They were first used for automation and form finding, 
later used for performance-based design and optimization. Computational design lead to 
the development of algorithmic, parametric, and generative design systems, which are 
now extensively used in architectural  design education. According to previous studies, 
computational design education mainly focuses on the application of coding and related 
software, and theoretical knowledge of computational design not proposed and taught in 
a separate course before its use in the design studio. However, due to the complexities 
of computational design, an extensive training course is needed to fully understand its 
capabilities. Therefore, this research proposes a comprehensive theoretical training 
framework for computational design. To accomplish this objective in the first stage of 
this research, the current status of its training was examined, and deficiencies in 
computational design education have been identified through library resources. In the 
second stage, important concepts for comprehending computational design knowledge 
were examined, and in the third stage, with the goal of overcoming the deficiencies of 
the current educational program, a comprehensive theoretical training framework which 
includes two phases of 1. Learning computational design principles 2. Learning an 
analysis of computational design principles is proposed. The proposed program includes 
concepts such as definitions, types, distinctions, components and process of 
computational design. The findings of this study could serve as a framework for 
curriculum development in computational design. 
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Introduction 

Computational design (CD) has gained popularity in architectural design and education in 
recent decades (Caetano, Santos, and Leitão, 2020; Ostrowska-Wawryniuk, Strzała, and Słyk, 
2022). However, there are two problems with training CD: 1. Learning to program (Austin and 
Qattan, 2016). 2. extensive CD knowledge (Caetano et al., 2020). To solve the first problem, it 
was proposed to offer programming courses separately (Austin and Qattan, 2016). The second 
issue is extensive CD knowledge (Caetano et al., 2020), which some students struggle to apply 
during the design process (Agkathidis, 2015). However, while studying and assessing existing 
CD research, it became apparent separate comprehensive course CD knowledge course had not 
been proposed prior to its implementation in the design studio. For example, students in research 
(Abdelmohsen, 2013) should acquire knowledge of CD. However, training is required. Some 
research such as (Fischer, 2002) have exclusively focused on programming. Additionally in some 
research, only some aspect of CD knowledge is considered. For example (Bianconi and 
Filippucci, 2018; Lakhanpuria and Naik, 2023), focused on generative and parametric design, 
although it is obvious that students need to be familiar with algorithmic design before applying 
these methods. Algorithmic design is the fundamental system underlying other CD systems 
(parametric and generative) (El-Khaldi, 2007). Lack of CD understanding resulted in limited use 
of this technology because CD applications in architectural design are various, including 
automation, form finding (Caetano et al., 2020), performance-based design, and optimization 
(Alfaris, 2009). To solve this problem, comprehensive theoretical training framework is being 
proposed in this research that include topics such as: 1. The concept of CD and digital design 
(DD) and their distinction 2. CD systems (Algorithmic, Generative, Parametric) 3. Differentiation 
of CD systems 4. Elements and concepts that shape CD systems 5. The concept of system 6. 
similarity of system concept and CD 7. Prescriptive models and CD Process. The first step is to 
understand CD concepts and differentiate between DD and CD (Caetano et al., 2020). The Next 
step is to learn about CD systems and how they differ (El-Khaldi, 2007). Systems consist of units 
and institutions that work together to achieve a common goal (Schmidt and Taylor, 1970). 
Systems include concepts such as hierarchy, relationships and rules (Alfaris, 2009). CD systems 
also takes these factors into account (El-Khaldi, 2007). Additionally according to MIT research, 
the performance-based CD design process consists of decomposition, formulation, synthesis, 
analysis, evaluation and optimization (Alfaris, 2009). By learning CD knowledge, its application 
in architectural design becomes more targeted and conscious. In fact, there are prerequisites in 
the field of CD that should be provided (Fasoulaki, 2008), to achieve better results in this field. 
Therefore, in the next section, CD training status and important CD concepts in the theoretical 
literature is examined. 
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Theoretical Literature 

CD Training Status 

Over the past two decades, CD has been used in architecture to solve a variety of design 
problems (Caetano et al., 2020). Therefore, the curriculum should be adapted to the current 
situation (Shtepani and Yunitsyna, 2023). Using CD requires extensive theoretical knowledge 
(Caetano et al., 2020) and programming skills (Shtepani and Yunitsyna, 2023) that many students 
lack. To solve first problem, (Austin and Qattan, 2016) proposes separate programming courses. 
Analyzing previous research shows that there is no separate comprehensive theoretical training 
framework before its use in design process (Vrouwe et al., 2020; Agirbas, 2022)). The training 
program is based on the research plans of professors (Oxman, 2008). However Students should 
have detailed theoretical knowledge, such as algorithmic thinking, before applying it. 
(Abdelmohsen, 2013)) aimed to integrate generative design and digital construction into 
architectural design education. The students have personally dealt with generative design. But 
CD knowledge should be taught fully, and professors play an important role (Agkathidis, 2015). 
Additionally Parametric design and CNC production have been applied in educational research 
(Karzer and Matcha, 2009). (Gürbüz, Çağdaş, and Alaçam, 2010) used fractals to create design 
solutions in the early stages of design education. Furthermore (Guidera, 2011) conducted 
research on parametric generative design education. Other studies taught generative design 
approaches such as shape grammar through collaborative design (Knight, 2012). Also 
architectural spaces were reconfigured using generative design and digital construction by 
students(Abdelmohsen, 2013). Another research in education created a generative model using an 
ecological approach (Yavuz and Çelik, 2014). In addition, generative design and physical testing 
have led to a new design process in the design studio (Huang and Xu, 2015). Agkathidis, (2015) 
examined the impact of generative design on architectural design education and (Bianconi and 
Filippucci, 2018) examined education in generative design and how design thinking can be 
transformed through the use of these systems. During landscape design education, a database for 
generative design and landscape design concepts were introduced (Vaz and Celani). Other studies 
have included mathematical and algorithmic in early design education (Ostrowska-Wawryniuk, 
Strzała, and Słyk,  2022). In another research (Abdelmohsen et al., 2017) discussed combination 
of generative design and intuition can be beneficial in design education. Also recent research 
used problem-solving based learning based on parametric design thinking in an architectural 
studio in India (Lakhanpuria and Naik, 2023). Another article evaluated 3D printing and 
parametric modeling tools by architecture students (Shtepani and Yunitsyna, 2023).  
Additionally, (Nazidizaji and Safari, 2013) developed algorithmic approaches and reverse 
engineering for architectural analysis. A significant trend involves integrating algorithmic and 
parametric thinking (Peteinarelis and Yiannoudes, 2018; Vazquez, 2024). Also, pedagogical 
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innovations include proposing new teaching methods, such as using incomplete instructions 
(Vazquez, 2024), fostering interactive learning environments and developing collaboration skills 
(Vrouwe et al., 2020; Agirbas, 2022).  

Furthermore, a review of internal references revealed that they also did not present a 
comprehensive educational program covering CD concepts and processes. Instead, they primarily 
focus on digital design education description, computer-aided design (CAD), and the general 
application of computer technology in education. For example, Poursistany et al. (2016) analyzed 
the impact of digital education on architectural creativity. Additionally (Asefi and Imani, 2017) 
investigates the impact of digital software on enhancing creativity in design education. 
Mahmoudi and Naghizadeh, (2010) addresses the transformation of architectural education due to 
the introduction of Information Technology (IT) as a design tool for idea representation, speed, 
flexibility, and 3D visualization, which manual tools lack. Additionally (Ahmadi Tabatabaie and 
Moosav, 2024) focuses on identifying the appropriate time and method for teaching software to 
enhance students' creativity. Their findings strongly recommend that software training should 
commence after students acquire a strong foundation in design and hand drawing. Furthermore 
(Eynifar and Hosseini, 2014) suggests that digital technologies in architectural design education 
be viewed as "media" rather than merely tools, as they serve as mediators and shape ideas. 
Therefore, it is apparent that several studies have incorporated CD systems in their curriculum 
but separate comprehensive CD knowledge training program was not proposed. The integration 
of technology into architectural design education precedes the development of its theoretical 
framework (Schumacher and Krish, 2010). CD training lacks complete training program (Fischer 
& Herr, 2001) and is not fully covered in the architectural design curriculum (Gürer, Alaçam, & 
Çağdaş, 2012). Understanding algorithmic thinking is crucial in CD education (Ozkar, 2017). 
Architectural education should provide future architects with algorithmic thinking skills and 
thinking (Ostrowska-Wawryniuk, Strzała, and Słyk,  2022). Architectural education must respond 
to these changes (Soliman, Taha, and El Sayad, 2019) and students should learn fundamental CD 
concepts. The next section will cover the fundamental CD concepts that students need study in a 
distinct course in order to meet these changing demands on architecture education. 

Computational design and Digital design 

Digital design (DD) and computational design (CD) have been driven by the advances in 
computer technology over the last decades. While DD requires computer tools, CD can be 
performed with or without a computer (Caetano et al., 2020). Architects used computing and 
algorithms to break down complicated design problems and solve them more effectively (M 
Rocker, 2006). Recent advances have resulted in CD replacing CAD (computer-aided design) in 
architecture (Kalay, 2004). This methodology drastically changes the standard design method by 
introducing innovative methodologies(Gurcan Bahadir and Tong, 2025). CD requires extensive 
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design knowledge and enables automation, form finding, optimization and performance based 
design (Caetano et al., 2020). CD concepts has developed algorithmic, parametric and generative 
design methods in architecture (Michelle and Gemilang, 2022). These methods have gained 
popularity in optimization, simulation (Oxman, 2017). Their applicability went beyond design 
automation and form finding (Mitchell & Terzidis, 2004). CD methods follow a system structure 
(El-Khaldi, 2007). A system is a collection of units working toward a coherent goal (Schmidt and 
Taylor, 1970; Alfaris, 2009). System includes CD-related ideas such as hierarchy (El-Khaldi, 
2007), relationship (Gu, Yu, and Behbahani, 2021) and rule (Doe, 2018). As technology 
advances, CD is becoming an increasingly important component in architectural design (Fatai, 
2024) and education (Indraprastha, 2018). CD systems are more important than digital 
technologies for promoting CD thinking in architectural education (Adem and Çağdaş, 2020). 

a. Algorithmic design system 

Algorithmic design (AD) systems serve as a basis for the development of other  CD systems  
(El-Khaldi, 2007). Online Cambridge dictionary defined the word algorithmic as “connected with 
or using algorithms.” AD become more and more popular because of its versatility and ability to 
establish work environments free from constraints (Castelo-Branco, 2020). Terzidis proposed AD 
(Terzidis, 2004), a process that uses algorithms(Sammer, Leitão, and Caetano, 2019). AD 
Thinking provides a step-by-step guide to achieve design goals and it supports designers in 
analyzing the context and understanding connections (El-Khaldi, 2007). AD is used in 3D 
building printing (Guerguis et al., 2017), residential project design (Chen, 2020) and building 
facades (Caetano, Garcia, Pereira, and Leitão, 2020) and envelope design Figure 1, (El-Khaldi, 
2007). Algorithms can find the nth member of an infinite set (Leeds, 1977). It has the potential to 
produce a novel method of idea generation that is beyond human perception (Terzidis, 2006). 
Algorithms can be executed in parallel, sequentially (Figure 2,3) or randomly (El-Khaldi, 2007). 
AD uses algorithms to create design models (Michelle and Gemilang, 2022), the relationship 
between the algorithm and the design is evident in algorithmic designs such as Morpheus Hotel 
Figure 4, (Caetano et al., 2020). Algorithms manipulate numbers, alphabets, geometric elements 
and fixed/variable units (Caetano and Leitão, 2021). Functions connect algorithms to units using 
equations including operators and architectural operators include activities like movement and 
rotation (El-Khaldi, 2007). Furthermore (Moussavi, 2009) explores the influence of function on 
form. In algorithmic design, inheritance refers to a directional relationship in which the child 
inherits the characteristics of its parent (El-Khaldi, 2007). A rule-based algorithm can be 
described as follows: If the condition... is true, start the function (De Souza and Ferreira, 2002). 
Decomposition (dividing a task into subtasks) is a key concept in algorithms. (Fried et al., 2018). 

 

b. Parametric design system 
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Parametric design  (PD) is one of the most commonly used CD methods that allows the 
creation of a parametric model by specifying dimensions and geometry (Wahbeh, 2017). Online 
Cambridge dictionary, defined the word parametric as “relating to the parameters of something.” 
Morty introduced parametric design in 1971 as the study of dimensional relationships through the 
use of parameters (Moretti, 1971). Its powers were further enhanced by the advent of parametric 
animation in the late 1990s to manipulate forms dynamically by adjusting dimensions, 
constraints, and connections (Mark, 2008). Greg Lane's work based on transformations is well-
known examples. Catia creates models in Figure 5, is regulated by two main parameters: 
thickness and height (El-Khaldi, 2007). PD is defined by its ability to create multiple solutions 
through rule-based algorithms, allowing for dynamic adjustments (Gu, Yu, and Behbahani, 2021; 
Jabi et al., 2017; Eastman, 2011). It enhances creativity by enabling designers to visualize and 
manipulate complex relationships within their designs (Campbell and Shea, 2014). PD has been 
used in green building design (Zhang, 2020) and energy efficient design (Touloupaki and 
Theodosiou, 2017). PD has been described in different ways (Caetano et al., 2020) as an 
optimization technique that identifies solutions within constraints (Eggert, 2005) and as a design 
style (Schumacher, 2008). Any system capable of connecting pieces is parametric whereas object 
properties are established through connections and inheritance (El-Khaldi, 2007). It is a subset of 
both algorithmic and code-based design (Elghandour et al., 2016). PD can accommodate any unit 
and relies on relationships. Designers can use inheritance to create families of objects, with 
changes in the first generation affecting the second generation (El-Khaldi, 2007). When 
parameters are used in algorithmic and generative design, they can be parametric (Caetano et al., 
2020). Parametric design can shift the focus from form to function. For example in Figure 6, PD 
have been used to discover shape and achieve goals such as user visual comfort, energy 
optimization and solar protection (Tabadkani et al., 2019). This method can help choose the best 
solutions from a variety of design options (Khamis et al., 2022). 

  

Figure 1. An example of an algorithmic envelope design (El-Khaldi, 2007). 
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Figure 2. Parallel execution of 
algorithm (El-Khaldi, 2007). 

 

 

 

 

Figure 3. Sequential execution of 
algorithm (El-Khaldi, 2007). 

 

 

 

 

Figure 4. Algorithmic design of 
Morpheus hotel (Source: 

Archdaily). 

 

 

 

 

Figure 5. An example of a parametric design (El-
Khaldi, 2007). 

 

 

 

 

Figure 6. An example of a parametric facade design 
(Tabadkani et al., 2019). 

 

c. Generative design system 

Generative design (GD) systems have long been used and Durand applied it to architecture in 
1803, developing new ways to create plans by assembling structural elements (Fasoulaki, 2008). 
Online Cambridge Dictionary defined generative as “able to produce or create something.” These 
systems use parallel, sequential and random algorithms (El-Khaldi, 2007). GD is an algorithmic 
or rule-based technique that creates a variety of possible design solutions(Ashour and Gogo, 
2024). This approach executes programmed instructions until the necessary conditions are met, 
and simple algorithms produce sophisticated results (Humppi, 2015). Cellular automata, L-
system and shape grammar are three examples of generative design systems (El-Khaldi, 2007) ; 
(Fasoulaki, 2008; Abdelmohsen, 2013; Toussi, 2020). Fractals have also been considered as a 
GD system (El-Khaldi, 2007; Fasoulaki, 2008). There is a relationship between algorithm and 
design output in AD, but not in GD, sophisticated creations based on simple algorithms (Caetano 
et al., 2020). L-systems model plant growth (Prusinkiewicz et al., 2018), cellular automata model 
reproduction (El-Khaldi, 2007), fractals model self-similarity (Lorenz, 2011), and shape 
grammars mimic the human ability to visually observe and calculate (Stiny, 2022). 
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d. Generative design system (cellular automata) 

Cellular automata (CA) is a GD technique that simulates reproduction(Caetano et al., 2020). 
John von Neumann's abstract model served as the original inspiration for cellular automata (El-
Khaldi, 2007).  CA facilitate the generation of spatial layouts by considering user-defined 
parameters such as geometry and adjacency requirements  (Ng, Chen, and Sathikh, 2024).  It can 
model ecological dynamics, allowing for the integration of environmental factors into 
architectural design (Liu and Herr, 2023). The network of interconnected cells adjusts their state 
according to its neighbors and local regulations (Patt, 2015). Its applications in architecture can 
range from facades and interior elements (Herr and Ford, 2015)  to the design of urban districts 
(de Oliveira and Celani, 2019). CA consist of replacement rules, cells(can contain geometric 
descriptions, colors, numbers, and other data) and initial states and inheritance is not possible 
with cellular automata because information is not passed on across generations (El-Khaldi, 2007). 
Chris Langton's diagram illustrates the behavioral transition of CA from fixed rules (generate 
cells in a fixed section) to random behavior(generates them in random mode) Figure 7, (Flake, 
2000). Cellular automata can generate intricate patterns in architectural design (Herr & Ford, 
2015). Wolfram, (2002) has studied one-dimensional cellular automata. He found the eight 
fundamental combinations of primitive cellular automata. Two states (black or white) yield eight 
(23) combinations Figure 8, and according to the initial combinations, there are 256 potential 
states (28). The Figure 9, shows CA with rules, an initial state and replaced states. John Fraser 
used them to form shapes (Januszkiewicz and Paszkowska-Kaczmarek, 2023). The Figure 10, 
shows application of cellular automata in envelope design (El-Khaldi, 2007). They are crucial to 
the development of CD thinking in design studios (Adem and Çağdaş, 2020). The integration of 
CA in academic settings promotes innovative design thinking, preparing future architects to 
leverage these tools in real-world applications (de Oliveira and Celani, 2019). 

 

Figure 7. Behavior of CA from fixed to random 
proposed by Chris Langton (Flake, 2000) 

 

Figure 8. Eight primary combinations of CA (Wolfram, 
2002) 

 

 

 

 

Figure 9. Combinations of CA (Wolfram, 2002) 

    

 

Figure 10. CA in envelope design (El-Khaldi, 2007) 
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e. Generative Design System (L-System) 

Aristide Lindenmayer developed the L-System generate shapes using strings, alphabets, rules, 
and repetitions (Lindenmayer, 1968). They provide a formalism for simulating plant growth 
(Prusinkiewicz et al., 2018). They can represent complex branching structures and organ 
differentiation, enhancing the realism of plant simulations (Loi, and Cournede, 2008). Timed, 
parametric L-systems enhance their ability to model dynamic phenomena like morphogenesis and 
mechanical models (McCormack, 2004).  Each generation replaces previous data, enabling the 
generation of new structures without retaining prior configurations (Št'ava et al., 2010) and 
algorithms are executed in parallel. The alphabet growth representation creates a tree-like grid 
Figure 11, (Prusinkiewicz and Lindenmayer, 2012). Letters are the smallest units of the system. 
Figure 12, shows the application of L-system in envelope design (El-Khaldi, 2007). They  consist 
of a grammar that includes an axiom, which is expanded into complex strings through defined 
rules Table 1, (Ashlock, Gent, and Bryden, 2005). They can visualize complex design patterns, 
such as those found in urban planning (Yu and Min, 2022). 

 

 

 

 

 

Figure 11. Tree network, L system (Prusinkiewicz 
and Lindenmayer, 2012). 

 

 

 

 

 

Figure 12. Application of L system in envelope design 
(Alfaris, 2009). 

 

Table 1. The rules, the initial string and subsequent generations (El-Khaldi, 2007). 

Rule       
Initial string R R L R 

Generation 1 L L RR L 

Generation 2 RR RR LL RR 

Generation 3 LL LL RR RR LL 

 

 

 

 



 
 
 

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025 
 

 

58 

f. Generative design system (Fractal) 

The creation of natural shapes by architects relies heavily on geometric notions (Pérez García 
and Gómez Martínez, 2010). Euclidean geometry is limited to smooth curves and surfaces, which 
do not reflect the irregularities present in natural objects (Banerjee, Easwaramoorthy, and 
Gowrisankar, 2021). Fractal geometry is suitable for developing nature-inspired architectural 
designs (Mandelbrot, 1982). Fractals are complex geometric forms, pushing the boundaries of 
traditional architectural design (Ediz and Çağdaş, 2007) with self-similarity, meaning that its 
constituent parts are similar to one another. Self-similarity allows for the replication of patterns at 
different scales, which can be observed in historical architectures like Gothic cathedrals and 
Indian temples (Lorenz, 2011).   To create a fractal, you must specify an initializer and rules for 
replacing copies of the initializer with smaller versions (El-Khaldi, 2007). Fractal geometry has 
been used in a variety of fields, including the natural sciences (Peitgen et al., 2004; Contini, 
2007), engineering (Leung, Wu, and Zhong, 2004)  and in medicine (Bankman, 2008).  Fractal 
geometry is used in architecture to visually view buildings (Bovill and Bovill, 1996; Ostwald, 
2001; Rian et al., 2007) and cities (Batty and Longley, 1994). Fractals can create new aesthetics 
(Patuano and Tara, 2020). Greg Lynn used fractals to create the Cardiff Bay Opera House 
(Addison, 1997). They  lack a smallest unit because they are based on recursive models because 
they iteratively decompose components and replace them with new algorithms (El-Khaldi, 2007). 
Fractal geometry has been used to develop and study properties of innovative planar truss 
configurations (Rian and Sassone, 2014) and created new free and complex shell structures 
(Stotz, Gouaty, and Weinand, 2009; Vyzantiadou, Avdelas, and Zafiropoulos, 2007). The 
Sierpinski triangle (Ettestad and Carbonara, 2018) and the Koch curve (Purnomo et al., 2019) are 
two well-known instances of fractal geometry (Figure 13,14,15). Albrecht Dürer 's pentagonal 
tile pattern was an early example of fractal design Figure 16. In fractal systems such as the L 
system, inheritance is not possible because data is constantly replaced (El-Khaldi, 2007). A 
fractal system creates objects with similar components that appear at different sizes Figure 17. 
They  have been used to create a porous roof Figure 18, filtered sunlight and allowed air 
circulation Sakai et al., (2012) and to design a non-smooth covering surface Figure 19, that can 
transmit sound (Cox and d’Antonio, 2016). They have been used in computer models of tree 
column topologies (Rian, Callegary, and Spinelli, 2015). However fractals and other 
mathematical concepts do not teach us how to create; Nevertheless, they can help improve the 
design process (Rian and Asayama, 2016). Digital tools facilitate the application of fractal 
geometry in design (Ediz and Çağdaş, 2007) and is increasingly used in architecture to create 
unique and structurally optimal designs, inspired by natural forms and mathematical principles 
(Mayatskaya et al., 2022). 
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Figure 13. Serpinski's triangle 
Source: (El-Khaldi, 2007). 

 

 

 

 

 

Figure 14. Koch curve Source: (El-
Khaldi, 2007). 

 

 

 

 

 

Figure 15. Contour set Source: 
(El-Khaldi, 2007). 

 

 

 

 

 

Figure 16. Fractal pattern, 
Albrecht Dürer Source: (El-

Khaldi, 2007). 

 

 

 

 

 

Figure 17. Fractal envelope 
Source: (El-Khaldi, 2007). 

 

 

 

 

 

Figure 18. Fractal pattern roof 
(Rian and Asayama, 2016). 

 

 

 

 

 

 

Figure 19. Non-smooth covering fractal surface (Sakai et al., 2012). 

 

g. Generative design (Shape Grammer) 

Shape Grammar (SG) is a generative design system (Caetano et al., 2020). Stiney and Gips 
were pioneers in this discipline (Stiny and Gips, 1971). It integrate visual observation with 
computational processes, enabling designers to engage in a form of "visual calculating" that 
enhances creativity (Stiny, 2022) and they are series of recursive transformations performed on 
an original shape to produce new shapes  (Toussi, Etesam, and Mahdavinejad, 2021). SG 
develops an endless number of designs with just a few rules and it can decompose complex 
structures into basic components and create complex shapes from simple shapes  (Stiny and Gips, 
1971). Figure 20, demonstrates a SG rule (El-Khaldi, 2007). By combining SG with parametric 
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design, designers can simulate energy performance, (Granadeiro, Duarte, and Palensky, 2011). 
SG enable inheritance because replacement rules can be applied to certain parts of components 
while leaving others without transformation (El-Khaldi, 2007). Stiny categorizes units as point, 
line, plane and solid Table 2, (Stiny, 2006). Stiny and Mitchell used a parametric SG to create 
Palladio's villa designs (Tepavčević and Stojaković, 2012). Furthermore SG was used to analyze 
Frank Lloyd Wright's houses and the vernacular Japanese teahouses, traditional Taiwanese 
houses, Mongolian garden (Chiou and Krishnamurti, 1995; Stiny and Mitchell, 1980; Knight, 
1981). SG could describe the historical development of styles in the creation of new design 
(Knight, 1981). SG is used to optimize daylight in the building envelope (Ashrafi and Duarte, 
2017). Truss structures were created using performance-based optimization and SG (Haakonsen, 
Rønnquist, and Labonnote, 2023). It  was also used to generate compositions Figure 21, (Eilouti, 
2019). The Gothic minaret was designed using SG Figure 22, (Knight, 2000) and  Frank Gehry 
used SG algorithms to justify envelope manufacturability Figure 23, (Shelden, 2002). City 
Engine, a software program that uses SG to autonomously create models based on a set of rules is 
creating virtual cities using 2D road networks (Müller et al., 2006). The Figure 24, shows how 
the program was used to create photos of Pompeii (Tepavčević and Stojaković, 2012). In 
architecture schools they are often used in design lessons (Haakonsen, Rønnquist, and 
Labonnote, 2023). CD systems gives users a tool to achieve goals (Haakonsen, Rønnquist, and 
Labonnote, 2023). The concept of a system is important in CD (Alfaris, 2009). This concept is 
examined in the next part. 

 

Figure 20. An example of a shape 
grammar (Stiny, 2006) 

 

Figure 21. A shape grammar 
composition (Knight, 2000) 

 

 

 

 

 

Figure 22. Minaret design (Knight, 
2000) 

 

 

 

 

Figure 23.  Shape Grammar envelope (Shelden, 2002) 

 

 

 

 

 

Figure 24. Modeling the Pompeii  city 
using shape Grammar software 
(Tepavčević & Stojaković, 2012) 
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Table 2. Shapes grammar units (Stiny, 2006). 

Basic element Dimension Boundary Content 

Point 0 None None 

Line 1 Two points Length 

Plane 2 Three or more Area 

Solid 3 Four or more Volume 

System concept and computational design 

The system concept influenced the architectural design and CD system. System is a collection 
of units and institutions that work together to achieve a common goal (Schmidt and Taylor, 
1970). They have systematic structure (El-Khaldi, 2007). In these systems, components are 
hierarchically structured and interact to achieve goals such as envelope design and energy 
optimization (Granadeiro et al., 2013). As an example, the bottom-up approach of CA allows for 
self-organization, where local interactions lead to global patterns (Liu, Corcoran, and Feng, 2020) 
or in algorithmic design systems, multiple components described by rules, work together to 
achieve design goals (El-Khaldi, 2007). CD systems were used to create an integrated 
architectural design and Subsystems have an interaction with each other (Alfaris, 2009; 
Fasoulaki, 2008). In this status there is a balance between shape exploration and performance, for 
example it  can be used to design high-rise building based on structural, lighting, zoning and 
aesthetic criteria (Fasoulaki, 2008).  

A. The concept of the system and its components 

The concept of system has penetrated to architectural design and CD systems (Alfaris, 2009). 
The Cambridge dictionary defines a system as “a set of connected things or devices that operate 
together.” Systems thinking encourages a holistic view, allowing architects to consider 
interactions within complex environments, leading to more effective design outcomes (Furtado, 
2012). Systems are characterized by their goals such as service-oriented (airport, stadium), 
product-oriented (car factory) and process-oriented (oil refinery) (DAG and Ethic, 2000). 
Systems consist of numerous components that can adopt various configurations (Wong et al., 
2023). Architectural research is concerned with systems in design to design the building envelope 
and predict energy consumption (Granadeiro et al., 2013). Systems analysis can help us better 
understand goals, constraints, risks, costs, opportunities and resources (Alfaris, 2009). System 
characteristics include integration, correlation, input/output, hierarchy, interaction, change and 
adaptability (Littlejohn and Foss, 2010). System tasks are completed in response to inputs 
(Papalambros and Wilde, 2000). The system's ability to form patterns is not solely dependent on 
local interactions but also on the broader context of the system's environment (Middya and Luss, 
1994). Diagram 1, shows the boundary of the office building system as influenced by its 
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surroundings and environmental components (site conditions, soil quality, weather and urban 
environment) and it affects energy consumption, structural stability and working conditions 
(Alfaris, 2009).  

The behavior of a system varies over time and System status is a set of variables that represent 
a specific characteristic of the system (DAG and Ethic, 2000). For example, variables such as 
aircraft waiting times and available parking spaces can be used to monitor the airport system 
(Alfaris, 2009). Effective variable selection should ensure that the chosen variables are relevant 
and significant (Mulaik, 2009). For example, if an airport wants to improve the passenger 
experience, parking lot modeling may be necessary. However, parking spaces may not improve 
safety (DAG and Ethic, 2000). Every system has an architecture that determines its behavior  
(Whitney et al., 2004). Hierarchy is a key concept in systems and Diagram 2, shows a 
hierarchical organization of system (Alfaris, 2009). Complex systems are typically organized into 
layers, where each level represents different scales and interactions among components (Wu, 
2013). Hierarchy enables inheritance, which means that traits are passed from parents to children 
(El-Khaldi, 2007). Each system can be a subsystem of a larger system (Alfaris, 2009). The 
system concept distinguishes between two types of architectural artifacts: modular (Kazemi, 
2019) and integrated (Miraglia, 2014). In the modular architecture Diagram 3, function and 
physical elements are inextricably linked (Eppinger and Ulrich, 1995) and each component can 
be developed separately. In integrated architecture Diagram 4, the connection between function 
and physical elements is complicated (Ulrich, 1995). It is difficult to determine the mutual impact 
of components on performance (Ulrich and Eppinger, 2016). Integrated systems prioritize a 
cohesive design that enhances operational efficiency (Miraglia, 2014). While some theories 
advocate modular architecture, real-world examples show that designs with integrated functions 
can achieve greater success and goals (Ulrich and Seering, 1990; Whitney, 1996). As Figure 25, 
shows, the modular design of a nail clipper does not always outperform an integrated nail clipper 
Figure 26, (Ulrich, 1995). In addition, Figure (27,28), illustrates two types of building envelopes 
(modular and integrated envelope). 

 

 

 

 

 

Diagram 1. The boundary of the office building system 
(Source: authors). 

 

 

Diagram 2. Hierarchy in system (Alfaris, 2009). 
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Computational design process 

In the late 1950s and 1960s, design models were created to reflect creative problem solving in 
design through phases such as synthesis, analysis, and evaluation (Alfaris, 2009). The design 
process involves a sequence of analytical, synthetic, and evaluative steps, allowing for iterative 
problem-solving and solution refinement (Vande Zande, 2006). Prescriptive models provide 
guidelines for implementation to achieve specific goals in design processes (Fernstrom, 1988) 
have algorithmic or systematic structure (Alfaris, 2009) and descriptive models capturing the 
actual process and patterns, identifying innovation opportunities (Zhang et al., 2012). Teaching 
prescriptive modeling alongside descriptive techniques enhances students' ability to implement 
design intent effectively (Gogolla and Selic, 2020). CD systems  have algorithmic or systematic 
structure (Alfaris, 2009).  Prescriptive models include the Archer (Archer, 1984), Eggert (Eggert, 
2005), Asimov (Asimow, 1962), Marcus (Markus, 1969), and Mawer (Maver, 1970) models. 
Various prescriptive design models provide organized methods for the design process. These 
models outline the stages of a project from inception to completion, ensuring systematic progress 

Diagram 3. Hierarchy and connection of physical 
elements in modular architecture (Alfaris, 2009). 

 

 

 

 

Diagram 4. Hierarchy and connection of physical 
elements in integrated architecture (Alfaris, 2009). 

 

 

 

Figure 25. A Modular nail clipper (Ulrich, 1995). 

 

 

 

Figure 26. An integrated nail clipper (Ulrich, 1995). 

 

 

 

 

 

Figure 27. Modular façade design (Alfaris, 2009). 

 

 

 

 

 

Figure 28. Integrated façade design (Alfaris, 2009). 
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and quality control (Maher, 1990). Archer 1984, identified six design tasks Diagram 5, including 
programming, data collection, analysis, synthesis, development, and communication. The Eggert 
2005 model Diagram 6, is divided into four phases: formulating problem, generating alternatives, 
analyzing alternatives, and evaluating alternatives (Eggert, 2005). As another prescriptive model, 
Asimo's model Diagram 7, is vertically structured and extends from needs description to 
production, including feedback loops to monitor and resolve difficulties. Asimo's horizontal 
model consists of repeated decision cycles: analysis, synthesis, evaluation and communication 
(Asimow, 1962). Marcus and Mawer's design model Diagram 8, provides a decision-making 
sequence that includes analysis, synthesis, evaluation, and decisions at various design levels 
(outline proposal to detail design) (Markus, 1969; Maver, 1970). MIT researchers proposed a 
Prescriptive performance-based CD process consisting of six phases including decomposition, 
formulation, synthesis, analysis, evaluation and optimization Diagram 9. Decomposition as a first 
step, breaking the problem into components.  Formulation (the second phase) identifies 
component relationships (Alfaris, 2009). Alexander initiated the study of these ideas (Chermayeff 
and Alexander, 1963). Synthesis assembles recognized components according to desired 
principles and uses CD systems and offers a variety of design solutions (Alfaris, 
2009).Computational design synthesis is a research area focused on approaches to automating 
synthesis activities in design (Campbell and Shea, 2014). 

 

 
 

 

Diagram 8. Tom Marcus and 
Tom Mawer's design model 

(source: Markus, 1969; 
Maver, 1970). 

 
 

Diagram 7. Asimov 
design model (source: 

Asimow, 1962). 
 

Diagram 6. Eggert 
design model (source: 

Eggert, 2005). 

Diagram 5. 
Archer's design 
model (source: 
Archer, 1984). 

 

 
Diagram 9. Performance based computational design process (Alfaris, 2009). 

 

Decomposition Formulation Synthesis Analysis Evaluation Optimizatiom
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Main problem 

sub-
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sub- problem3 

 

sub-problem1 

 

 

Decomposition 

In computational contexts, tasks can be broken down into sequential sub-tasks, which can 
simplify the design process (Fried et al., 2018). Decomposition is essential since learning 
individual components leads to a greater comprehension of the whole system (Alfaris, 2009). 
Alexander, (1964) broke down design problems based on customer needs as a network Diagram 
10. Vertices represent functional requirements, while edges illustrate their connections and the 
degree of interaction. Shorter edges mean more interactions (Alfaris, 2009). This grouping allows 
interactions to be mapped (Alexander, 1964b). Models such as decomposition help in structuring 
design knowledge, facilitating better problem-solving and innovation in design (Maher, 1990). 
Two hierarchical methods can be used in decomposition (1. tree hierarchy Diagram 11, and 2. 
network hierarchy Diagram 12. Decomposing 3D models into architectural elements enhances 
comprehension of their structure, allowing for better analysis and representation (Kobyshev et al., 
2016) Figure 29, shows decomposition of school floor plan into sub-problems (environmental, 
structural and circulation sub problems) and Figure 30, shows how the outer envelope is 
decomposed into its components (Alfaris, 2009). 

 

Diagram 10. 
Decomposition of a 

problem (Alexander, 
1964a). 

 

Diagram 11. Decomposition ( tree hierarchy) 
(Alfaris, 2009). 

 

 

Diagram 12. Decomposition (network 
hierarchy) (Alfaris, 2009). 

 

 

 

 

 

 

 

Figure 29. Decomposition of the school plan (Alfaris, 
2009). 

 

 

 

 

 

 

Figure 30. Decomposition of the (source: Alfaris, 
2009). 

sub-problem1 

 

sub-problem2 

sub-problem3 

 



 
 
 

International Journal of Applied Arts Studies, Volume 10, Issue 2, 2025 
 

 

66 

Formulation 

The next step (formulation) in the CD model is to understand the relationships between the 
various components Diagram 13 (Alfaris, 2009). CD utilizes mathematical languages to define 
relationships between components, enabling sophisticated design processes that are otherwise 
unattainable (Koyama, 2021). Components in CAD systems are often sized and positioned based 
on their relationships with other components, ensuring that designs are coherent and functional, 
which necessitates a clear understanding of these relationships (Amadon, Rajkumar, and Kumar, 
2021). Chermayeff and Alexander (1963) pioneered structural formulation techniques and they 
outlined the links between these problems Diagram 14. Alexander focused on patterns in his 
work Pattern Language (Alexander, 1977). Design Structure Matrices (DSM) is used in systems 
engineering to represent component interactions (Samson and Peterson, 2010). Diagram 15, 
shows an activity-based DSM for the creation of a soda bottle (McCord 1993). Reading across 
rows identifies the other activities on which a given action depends for information. Black 
squares represent the transmission of information or activity interdependence (Grady, 1994). The 
interactions that occur in DSM differ from one project to the next and provide a taxonomy for 
system element interactions based on four categories: spatial, energy, information, and material 
(as illustrated in Table 3). They also provide a quantification scheme for these interactions, where 
the square marks are replaced by numbers or colors Diagram 16, (Pimmler and Eppinger, 1994).  

 

 

 

 

Diagram 13. Decomposition and formulation (source 
(Alfaris, 2009). 

 

 

 

 

Diagram 14. Issues share many connections are 
grouped together (Chermayeff and Alexander, 1963). 

 

 

 

 

 

 

Diagram 15. An activity-based DSM for a soda bottle 
(McCord 1993). 

 

 

 

 

 

 

 

 

 

Diagram 16. DSM (Pimmler & Eppinger, 1994). 
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Table 3. Taxonomy for system element interactions (Pimmler and Eppinger, 1994). 

 

 

  

 

 

 

Synthesis 

Online Cambridge dictionary, defined synthesis as” the act of combining different ideas or 
things to make a whole that is new and different from the items considered separately.” Synthesis 
involves the use of abductive reasoning, which generate innovative concepts (Fei, 2019). It 
involves decisions about arrangement, connections, forms (Papalambros and Wilde, 2000) and 
the creation of physical and informational structures (Suh, 1990). (Eder, 2009) discusses the 
cyclical nature of design engineering, where analysis and synthesis are interlinked processes that 
inform the development of technical systems. Computational design synthesis has also 
championed the use of generative design grammars as a means to simultaneously provide 
structure and design freedom during synthesis (Campbell and Shea, 2014). Synthesis models 
should have a generative mechanism, typically performed using parametric or algorithmic 
descriptions (Alfaris, 2009). A design algorithm expresses a strategic approach to tractable 
problems or a stochastic search for intractable problems (Terzidis, 2006). The connection 
between form and performance should be included in the representation formalism. This provides 
restrictions on permitted designs and ensures that the rules discard designs that do not comply 
with constraints (Alfaris and Merello, 2008). Synthesis models require a geometric representation 
(Alfaris, 2009). Advances in function-based and analogy-based synthesis have expanded the 
range of potential solutions (Chakrabarti et al., 2011). As sown in the Diagram 17, the synthesis 
model uses the original design parameters to generate a variety of design solutions through 
internal operations. For example, in a curve or surface equation, parameters can be changed to 
represent a family of curves or surfaces Figure 31, (Alfaris, 2009). In the conceptual design 
phase, synthesis is key to explore and define design concepts. It allows architects to invent 
transitions that lead to the description of artifacts (Kotsopoulos, 2005; Hartmann et al., 2018). By 
generating a wide range of design alternatives, synthesis supports the innovation process and 
enhances creativity in architectural design. It allows for the exploration of new forms and 
solutions, contributing to the evolution of architectural practices (Helms and Shea, 2012). 
Relationships (enable communication between the components), constraints (conditions that must 
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be met) and rules (to verify the logic) determine the behavior of the synthesis model. Methods 
such as L-systems, CA and SG can be considered for capturing design relationships (Alfaris, 
2009).  

 

 

 

 

Diagram 17. Expected input and output of the synthesis model (Alfaris, 2009). 
 

 

 

 

 

 

 

Figure 31. Parametric equations in geometry define curves (Alfaris, 2009). 
Analysis, Evaluation and Optimization 

The analysis model determines the behavior associated with each design and the evaluation 
model attempts to take into account the multi-objective criteria of the design problem. 
Optimization models are then used to determine the best designs (Alfaris, 2009). Online 
Cambridge dictionary, defined analysis as “the act of studying or examining something in detail, 
in order to discover or understand more about it.” Alexander, (1964) describes analysis as 
determining how effectively a solution achieves its stated goals. Design challenges sometimes 
involve numerous disciplines, each with its own analytical model. For example Figure 32, 
(Averill, 2006), Figure 33, shows analysis models for examining the quality of light in different 
spaces and the air flow around the building (Alfaris, 2009). Analysis models have different input 
requirements and output accuracies Diagram 18, (Alfaris and Merello, 2008). Outputs can include 
energy efficiency, structural integrity, and environmental impact, which are derived from the 
analytical model's computations (Mitchell and Molloy, 2020). Analytical models are formal 
representations that support reasoning and understanding in design processes (Jackson, 2009). In 
architectural education, analytical models assist students in grasping design principles by 
organizing elements hierarchically (Azmy, 2010). These models are represented in abstract 
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mathematical form by variables, parameters, equations and algorithms (Jacoby and Kowalik, 
1980). Evaluation models make it easier to select good design by creating and comparing 
alternatives Diagram 19, (Alfaris, 2009). Online Cambridge dictionary defined evaluation as “the 
process of judging or calculating the quality, importance, amount or value of something.” Real-
world problems sometimes involve multiple, possibly conflicting goals. This results in a 
collection of equivalent solutions rather than a single optimal solution (Abraham and Jain, 2005). 
Evaluation models aid decision making in multi-objective design challenges. If decision-making 
is delayed, the evaluation model becomes part of the optimization process (Alfaris, 2009). Online 
Cambridge dictionary defined Optimization as “the process of making something as good or 
effective as possible.” The chosen solution is determined by additional restrictions or objective 
functions that integrate the search goals (Gries, 2004). Guass invented algorithm, which gave rise 
to the term optimization. It serves as the basis for the science of optimization (Gray, 2018). 
Optimization requires identifying performance criteria to maximize or minimize, such as cost or 
efficiency, while adhering to constraints like physical laws and manufacturing limitations (Lam 
and Chen, 2019). Optimization is the process of refining or fine-tuning a design or system based 
on one or more performance criteria (Papalambros, 2000). The optimization process is 
continuous, as architects must adapt designs based on evolving requirements and feedback 
throughout the project lifecycle (Davis, 1997).  An optimization model generates a new design 
vector, which is then used as input to the synthesis model Diagram 20, (Alfaris, 2009). Multiple 
objectives in design can be inherently conflicting, such as minimizing control effort (Sardahi, 
2016). This shows that there are numerous optimal solutions and not just one model. Multi-
objective optimization integrates functional constraints, such as accessibility, into layout designs, 
ensuring that components are both operational and maintainable (Song et al., 2023).  

 

 

 

 

Diagram 18. Expected input and output of the 
analysis model (Alfaris, 2009) 

 

 

 

 

Diagram 19. Expected input and output of the 
evaluation model (Alfaris, 2009) 
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Diagram 20. Expected input and output of the 
optimization model (Alfaris, 2009) 

 

 

 

 

 

 

 

 

 

Figure 32. Analysis model for daylight to assess the 
quality of light in different spaces (Averill, 2006) 

 

 

 

 

 

 

Figure 33. Analysis model to study of air flow around the building (Alfaris, 2009). 
Methodology 

The purpose of this research is to propose a comprehensive theoretical CD training 
framework. The selected method is based on the Design Research Method (DRM) by (Blessing 
and Chakrabarti, 2009), and  research method conducted by (Vazquez, 2024) that merely 
provided a restricted program in parametric design training. However comprehensive CD training 
program had not been presented in that research. The DRM method is a framework in four stages: 
1. Research Clarification 2. Descriptive Study I 3. Prescriptive Study and 4. Descriptive Study II. 
This paper proposed 3 research stages and the prescriptive study is followed by a second 
descriptive study that aims to implement and test the proposed approach will be done in further 
studies. 

 Research clarification and descriptive study which consists of a literature survey, followed by 
a prescriptive study, in which an instructional method is proposed. The descriptive study, is 
conducted through literature review on CD training and CD knowledge studies. The survey is 
conducted by searching in several databases with the following terms: (“teaching method” OR 
“pedagogical approach” OR “teaching strategy”) AND (“digital design” OR “computational 
design” OR “parametric design” OR “generative design” OR “algorithmic design”). After 
identifying the main articles in the area, an analysis was conducted. The outcome of the 
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descriptive study revealed that there is no specific comprehensive CD theoretical training 
framework prior to its usage in the design studio, and each study focused on some aspects of CD 
and concentrated on the use of software and coding (Austin and Qattan, 2016; Ostrowska-
Wawryniuk, Strzała, and Słyk,  2022; Shtepani and Yunitsyna, 2023). However, learning CD 
necessitates theoretical knowledge (Caetano et al., 2020) that extends beyond software and 
programming. Additionally library resources analyzed and important topics in this field identified 
(DD and CD concepts, CD systems, system concept, CD system elements and CD design process 
(Caetano et al., 2020; Michelle and Gemilang, 2022; El-Khaldi, 2007; Alfaris, 2009; Fasoulaki, 
2008). Finally in third stage (prescriptive study), with the goal of overcoming the deficiencies of 
the current educational program, this research will propose a comprehensive knowledge-based 
training framework. The training framework consists of two phases: 1. Learning CD principles 2. 
Learning an analysis of CD principles. In the first phase, topics such as DD and CD definition, 
types of CD systems (Algorithmic, Parametric and Generative design), system concept, 
prescriptive models and CD process were examined. Understanding CD concepts is necessary but 
not sufficient. Therefore, in the second phase, CD systems and their components were analyzed 
to identify differences. Additionally, integration of prescriptive models and CD process were 
examined. Finally training framework is proposed. Research methodology is presented in 
Diagram 21. 
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Diagram 21. Research methodology (analyzing current state and proposing CD training framework) 
(Source: Authors). 
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Results and Discussion 

Research clarification and Descriptive study  

 Analysis of the current state of CD education and CD concepts 

According to the previous research (Vazquez, 2024; Ostrowska-Wawryniuk, Strzała, and 
Słyk, 2022; Lakhanpuria and Naik, 2023), as mentioned in Table 4, CD was partially taught in 
the design studio, and the emphasis of these studies were on coding and software usage. A review 
of internal articles (Mahmoudi and Naghizadeh, 2010; Poursistany et al. 2016; Asefi and Imani, 
2017; Ahmadi Tabatabaie and Moosav, 2024), revealed that only the impact of  information 
technology and digital tools on architectural education have been examined and comprehensive 
CD training program had not been studied. However architecture students should have a thorough 
understanding of CD theory before applying it (Caetano et al., 2020). Some previous research 
focused on GD (Bianconi and Filippucci, 2018) and PD (Lakhanpuria and Naik, 2023), however 
it is obvious that students need to be familiar with AD (as fundamental concept) (El-Khaldi, 
2007). A review of Research  like (Caetano et al., 2020), (Michelle and Gemilang, 2022)) 
demonstrates the importance of CD and DD concepts. However, research in the Table 4, shows 
that CD training research has generally focused on AD, PD, and GD methodologies, and the 
underlying concept of CD itself has received little attention. CD methodologies have a systematic 
framework ((El-Khaldi, 2007; Alfaris, 2009; Fasoulaki, 2008). However, this concept has not 
been considered in previous education research. Additionally there are differences in CD 
systems, as evidenced by CD-related research such as (Michelle and Gemilang, 2022; El-Khaldi, 
2007; Fasoulaki, 2008) and previous CD training studies did not address distinctions. Prescriptive 
models such as Archer (Archer, 1984) have been proposed and demonstrate the importance of the 
design process. The architectural theorists, Alexander and Chermayeff studied design stages such 
as decomposition and formulation (Alexander, 1964a; Chermayeff and Alexander, 1963). 
Academic research, particularly at MIT, has also proposed a model for the CD process, which 
includes steps such as decomposition, formulation, analysis, evaluation and optimization (Alfaris, 
2009; Alfaris and Merello, 2008). But these concepts have been missed in previous CD training 
research described in the Table 4. Based on the findings and in order to fill research gap (the lack 
of a comprehensive CD training program), a comprehensive theoretical training framework on 
Learning CD principles has been proposed in this research. These concepts have been 
incorporated and examined in the upcoming section of the curriculum and main CD concepts 
collected from literature analysis represented in Table 5. 
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Table 4. Previous (CD) training research (Source: Authors). 

Research CD 
type 

Research CD 
type 

Research CD 
type 

Research CD type 

1 (Fischer, 2002) GD 7 (Yavuz & 
Çelik, 2014) GD 13 

(Lakhanpuria 
& Naik, 
2023) 

PD 19 (Vazquez, 
2024) PD and AD 

2 (Karzer & 
Matcha, 2009) PD 8 (Huang & Xu, 

2015) GD 14 
(Nazidizaji 
& Safari, 

2013) 
AD 20 

(Mahmoudi 
& 

Naghizadeh, 
2010) 

Information 
technology 

3 
(Gürbüz, 

Çağdaş, and 
Alaçam, 2010) 

GD 9 (Agkathidis, 
2015) GD 15 

(Austin & 
Qattan, 
2016) 

AD 21 
(Eynifar & 
Hosseini 
,2014) 

Digital 
technology 

4 (Guidera, 
2011) 

GD 
and 
PD 

10 (Abdelmohsen 
et al., 2017) GD 16 

(Peteinarelis 
& 

Yiannoudes, 
2018) 

PD 
and 
AD 

22 (Poursistany 
et al. 2016) 

Digital 
technology 

5 (Knight, 2012) GD 11 
(Bianconi & 
Filippucci, 

2018) 
GD 17 (Vrouwe,et 

al., 2020) PD 
23 
 

(Ahmadi 
Tabatabaie 
& Moosav, 

2024) 

Teaching 
software 

6 (Abdelmohsen, 
2013) 

GD 
 12 (VAZ & 

CELANI) GD 18 (Agirbas, 
2022) PD 

Table 5. CD concepts in pervious CD research 

CD and DD concepts Cd and DD concepts and their distinctions (Michelle & Gemilang, 2022), (Caetano et al., 
2020) 

CD systems 
 

CD systems (AD, PD, GD) concepts and 
their application 

(Michelle & Gemilang, 2022),(Caetano et al., 
2020),  (El-Khaldi, 2007); (Fasoulaki, 2008) 

System concept 
 

System concepts and its application in CD, 
system components 

(Alfaris, 2009), (Alfaris & Merello, 2008) 

CD systems elements 
 

Units, smallest units, rules, inheritance, 
algorithm execution 

(Caetano et al., 2020), (El-Khaldi, 2007), 
(Fasoulaki, 2008) 

CD design process 
 

Prescriptive models and CD design process (Alexander, 1964a), (Chermayeff and 
Alexander, 1963) 

 

Prescriptive study (Training program) 

a. First training phase (Learning computational design principles) 
This research training program has two phases (1. Learning CD principles 2. Learning an 

analysis of CD principles). During the initial training phase Diagram 22, it is critical to grasp the 
CD principles, such as definitions of CD and DD (Caetano et al., 2020; Michelle and Gemilang, 
2022), recognition of all types of CD systems (El-Khaldi, 2007; Michelle and Gemilang, 2022; 
Fasoulaki, 2008). AD requires knowledge of algorithms, decomposition, and how to propose 
solution for each part (Terzidis, 2004; Fried et al., 2018). PD requires knowledge of parameters, 
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variables and algorithms (Gu, Yu, and Behbahani, 2021). GD requires an understanding of 
algorithms and the recognition of generative systems (Caetano et al., 2020). CD systems have 
systemic structure (Alfaris, 2009; Alfaris and Merello, 2008) and understanding its concept and 
components is critical. Recognizing design models, especially prescriptive models and CD design 
process (Alfaris, 2009; Alfaris and Merello, 2008), is also necessary in the first phase of training. 

 

 

 

 

 

 

 

 

 

 

Diagram 22. First training phase (Source: Authors). 

b. Second training phase (learning an analysis of computational design principles) 
The second phase of CD training Diagram 23, is the analysis of CD systems. Studies such as 

(Caetano et al., 2020) examined CD and differentiated it from DD. As a result, knowing this 
distinction is critical as the first step. Furthermore, research like (El-Khaldi, 2007; Michelle and 
Gemilang, 2022; Fasoulaki, 2008; Caetano et al., 2020) examined CD methodologies and their 
constituent elements and structures, emphasizing the distinctions between them. As a result, it is 
critical to familiarize students with these distinctions and their basic components (application, 
algorithm execution type, unit, rules, smallest unit and inheritance). CD follows a systematic 
structure (El-Khaldi, 2007; Alfaris, 2009). As a result, knowing the systematic structure of CD 
and comparing it to the concept of system is important in the following step. The next step is to 
consider integrating prescriptive design models with CD process (Alfaris, 2009) in order to 
produce a comprehensive design model. Both of them (prescriptive model and CD process) have 
a systematic and algorithmic framework and can overcome each other's shortcomings (Alfaris, 
2009). 
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and digital design 
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computational design 
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and Computational 
Design Process) (5)

End

 

Diagram 23. Second training phase (Source: Authors). 

c. Proposing a comprehensive theoretical training framework 
By combination of first and second phase, CD training program is proposed Diagram 24. CD 

training program includes CD principles and their analysis. As Diagram 24, shows, Students 
should comprehend CD and DD and their distinction 2. CD systems (algorithmic, generative, 
parametric) and their distinctions 3. Analyzing CD systems (recognizing elements of CD systems 
such as hierarchy, inheritance, rules) 4. the concept of system and the similarity of system and 
CD 5. Design process (integration of Prescriptive Models and CD Process). 

 

 

 

 

 

 

 

Diagram 24. Proposing a computational design training program (Source: Authors). 
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Algorithmic Design

Identifying the relationship 
between algorithm and 
design

Generative Design

• Absence of a direct relation 
between the algorithm and 
design 

Parametric Design

• Identifying the relation 
between parameters and 
design

Digital Design (DD)

Computer aided

Computational Design (CD)
Computer aided

Manual 

Computational Design, Digital Design, Computational Design Systems and their Distinction  

DD and CD are widely used and Knowing their differences (Caetano et al., 2020) is helpful in 
understanding them better and using them in education. Digital design requires computer tools. 
CD requires calculations to develop designs and can be performed with or without computers 
Diagram 25, (Caetano et al., 2020). It is important to understand the differences between CD 
systems which are critical to maximizing their application. Algorithms are applied in algorithmic 
and generative design systems but in generative design system, the relationship between the 
algorithm and the output is difficult to discover. Parametric design systems are used when a 
number of parameters affect the final design and algorithms can be used in parametric design 
Diagram 26, (Caetano et al., 2020; El-Khaldi, 2007; Michelle and Gemilang, 2022; Fasoulaki, 
2008). 

 

 

Diagram 25. Distinction of (DD) and (CD) (Source: Authors). 

 

 

 

 

 

Diagram 26. Distinction between computational design systems (Source: Authors). 

Analyzing computational design systems 

The concept of decomposition can be used to examine the structure of CD systems. This may 
focus on the use of CD systems, rules, constituent units, the smallest unit, and inheritance (El-
Khaldi, 2007). Various design problems are solved and simulated through algorithmic design 
(Terzidis, 2006) and parametric design (Schumacher, 2008; Tabadkani et al., 2019). Generative 
systems use L-systems (Prusinkiewicz and Lindenmayer, 2012), CA (Adem and Çağdaş, 2020), 
fractals (Mandelbrot, 1982; Patuano and Tara, 2020), and SG (Stiny and Gips, 1971; Tepavčević 
and Stojaković, 2012; Eilouti, 2019). CD systems are rule-based (Caetano et al., 2020). AD 
(Caetano and Leitão, 2021) and PD use numerous rules and generative systems use the 
substitution rules. Units used in CD systems are different. Algorithmic and parametric units are 
diverse, while L-systems and cellular automata use symbols. Fractals and shape grammar use 
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symbols, numbers and shapes. AD and PD use various smallest units, but L-systems, CA, and SG 
use alphabet, cell, and basic architectural elements. Fractals do not have a smallest unit due to 
substitution. Algorithmic and parametric design include inheritance, but L-systems, CA and 
fractals do not include inheritance. However, shape grammar can use replacement rules to change 
elements or parts while keeping the rest, allowing inheritance (El-Khaldi, 2007; Alfaris, 2009; 
Michelle and Gemilang, 2022; Fasoulaki, 2008; Caetano et al., 2020). The characteristics of each 
system (AD, PD and GD) such as their implementation, rules, units, smallest unit and inheritance 
are presented in Diagram 27, 28.  

 

 

 

 

 

 

 

 

Diagram 27. Computational design systems analysis (algorithmic and parametric design system) (Source: 
Authors). 

 

 

 

 

 

 

 

 

 

 

 

Diagram 28. Computational design system analysis (generative systems) (Source: Authors). 
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Concept of system and its similarity with computational design  

Systems are collections of units and institutions that work together to achieve common goals. 
This concept could be used in CD systems (El-Khaldi, 2007, Alfaris, 2009). As showed in Table 
6, System and CD have comparable principles such as component relations, hierarchy, rules, and 
system execution (parallel, sequential, and random). 

Table 6. Similarity of system and computational design (Source: Authors). 
Computational design System Concept 

     Relation between components 

     Hierarchy 

     Rules 

     System execution (parallel, 
sequential and random) 

Design process (Integration of Prescriptive Models and Computational Design Process). 

The algorithmic and systematic structure of the CD process includes decomposition, 
formulation, synthesis, analysis, evaluation and optimization (Alfaris, 2009; Alfaris and Merello, 
2008). In addition to the phases mentioned, the prescriptive models also include phases like 
planning, data collection Table 7. By combining prescriptive models and the CD process, 
shortcomings of these models can be minimized and a complete design process can be proposed 
Diagram 29. These steps are not sequential and can be performed and repeated as the designer 
considers (Alfaris, 2009). 

Table 7. Similarity of prescriptive model and computational design process (Source: Authors). 

Prescriptive models Computational 
design process 

 
 

Programming 

Archer Eggert Asimov 
Tom Marcus 

and Tom 
Mawer 

Computational 
design process 

+     
Data collection +     

Identifying needs  + +   

Formulating the design problem (specifying 
goals and constraints)  +    

Feasibility studies +     

Data analysis  (decomposition) + + + + + 
Synthesis  + + + + 

Analysis of design alternatives  + + + + 

Evaluation of design alternatives  + + + + 
Optimization +    + 
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Diagram 29. Design process (combination of prescriptive models and computational design process) 
(Source: authors). 

Decomposition is an important concept in algorithms and CD systems. Decomposition can be 
used to decompose both the design product and the process. The Diagram 30,31, shows 
decomposition of the office building components (envelope, structure, space organization, 
facilities). The next step is to understand how they interact (formulation) (Alfaris, 2009). For 
example, when designing a sport stadium, the relationship between material, structure, envelope 
and space organization is crucial Figure 34, and Diagram 32. This makes it clear that the building 
does not consist of independent individual components, but is a networked system of subsystems 
in which all components interact with each other and create a mutual effect (Fasoulaki, 2008). 
The synthesis phase is crucial in CD because it combines components to provide design 
possibilities. By Using algorithmic, parametric and generative design methods, designers create a 
variety of alternatives (Alfaris, 2009). In contrast to traditional methods, CD offers a wider range 
of solutions (Agkathidis, 2015). The diagram shows an example of using a CD system to make 
design decisions in various areas such as structure, envelope and floor plan design Diagram 33. 

 

 

 

 

 

 

 

Diagram 30. Analysis of the envelope and 
structure of an office building (Source: Authors) 

 

 

 

 

 

 

 

Diagram 31. Analysis of spatial organization and 
facilities of an office building (Source: Authors) 
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Figure 34. Allians Riviera stadium (Source: 
Archdaily). 

 

 

 

 

 

 

Diagram 32. Relationship between structure, 
material, envelope and space organization in stadium 

design (Source: Authors). 

 

 

 

Diagram 33. Application of computational design systems in the synthesis phase (Source: Authors). 

Before proceeding, all design decisions must be analyzed and evaluated (Alfaris, 2009; Alfaris 
and Merello, 2008). Students should be able to analyze and evaluate design criteria such as goals 
and restrictions. CD can be performed with or without a computer (Caetano et al., 2020). When 
analyzing a building, accurate revision of plans, elevations, sections, openings, site plans, 
installation problems, form analysis, function, structure, climate, acoustics, topography, analysis 
of economic, social and cultural factors, historical records, obstacles and legal restrictions should 
be taken into account (Ching, 2023). After analyzing and evaluating the design alternatives, the 
selected alternative may need to be optimized (Alfaris, 2009). Optimization can be used in a 
variety of goals including energy consumption, column spacing, and space organization. Training 
in analysis, evaluation and optimization is presented in Table 8. 
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Table 8. Training in analysis, evaluation and optimization in CD (Source: Authors). 
1. Understanding the concept of analysis and evaluation 
2. Ability to examine design constraints and objectives in design alternatives 
3. Recognizing analysis and evaluation software  
4. Understanding the concept of optimization 
5. Ability to optimize the selected alternative based on design criteria 
6. Recognizing optimization software  

Conclusion 

Computational design (CD) systems (Algorithmic, Parametric and Generative design systems) 
have been widely used in architectural education during the last decade. Examining previous 
research indicates that separate comprehensive framework for its training has not been proposed. 
Previous research focused on programming, the use of software and some aspect of CD systems 
in the design process. However, learning CD necessitates theoretical knowledge that extends 
beyond software and programming. An extra course on theoretical topics can improve its use. 
Therefore, this research proposes a framework for training theoretical knowledge in this field. In 
the first and second stage of the research (research clarification and descriptive study), the 
existing state of its training was reviewed and analyzed, and its deficiencies and shortcomings 
were identified through the use of library resources. Additionally important concepts for 
comprehending CD knowledge were identified, and in the third stage (prescriptive study), with 
the goal of overcoming the deficiencies of the current CD training, a comprehensive framework 
including two phases of 1. Learning CD principles 2. learning an analysis of CD principles is 
proposed. This framework consists of topics ranging from basic to advanced, including: 1. 
computational design and digital design and their distinction 2. CD systems (Algorithmic, 
Generative and Parametric) and their distinctions 3. Analyzing CD systems (recognizing concepts 
such as hierarchy, inheritance, rules and units in CD) 4. The concept of system and the similarity 
of system and CD 5. Design process (integration of Prescriptive Models and CD Process). This 
framework can gradually familiarize students with principles of CD systems and their analysis. 
Results of this study can be applied as a framework for CD training. 
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